当前位置: 首页 > news >正文

pytorch-构建卷积神经网络

构建卷积神经网络

  • 卷积网络中的输入和层与传统神经网络有些区别,需重新设计,训练模块基本一致
    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.nn.functional as F
    from torchvision import datasets,transforms 
    import matplotlib.pyplot as plt
    import numpy as np
    %matplotlib inline

    首先读取数据

  • 分别构建训练集和测试集(验证集)
  • DataLoader来迭代取数据
    # 定义超参数 
    input_size = 28  #图像的总尺寸28*28
    num_classes = 10  #标签的种类数
    num_epochs = 3  #训练的总循环周期
    batch_size = 64  #一个撮(批次)的大小,64张图片# 训练集
    train_dataset = datasets.MNIST(root='./data',  train=True,   transform=transforms.ToTensor(),  download=True) # 测试集
    test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())# 构建batch数据
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)

    卷积网络模块构建

  • 一般卷积层,relu层,池化层可以写成一个套餐
  • 注意卷积最后结果还是一个特征图,需要把图转换成向量才能做分类或者回归任务
    class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Sequential(         # 输入大小 (1, 28, 28)nn.Conv2d(in_channels=1,              # 灰度图out_channels=16,            # 要得到几多少个特征图kernel_size=5,              # 卷积核大小stride=1,                   # 步长padding=2,                  # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1),                              # 输出的特征图为 (16, 28, 28)nn.ReLU(),                      # relu层nn.MaxPool2d(kernel_size=2),    # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14))self.conv2 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(16, 32, 5, 1, 2),     # 输出 (32, 14, 14)nn.ReLU(),                      # relu层nn.Conv2d(32, 32, 5, 1, 2),nn.ReLU(),nn.MaxPool2d(2),                # 输出 (32, 7, 7))self.conv3 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(32, 64, 5, 1, 2),     # 输出 (32, 14, 14)nn.ReLU(),             # 输出 (32, 7, 7))self.out = nn.Linear(64 * 7 * 7, 10)   # 全连接层得到的结果def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.conv3(x)x = x.view(x.size(0), -1)           # flatten操作,结果为:(batch_size, 32 * 7 * 7)output = self.out(x)return output

    准确率作为评估标准

    def accuracy(predictions, labels):pred = torch.max(predictions.data, 1)[1] rights = pred.eq(labels.data.view_as(pred)).sum() return rights, len(labels) 

    训练网络模型

    # 实例化
    net = CNN() 
    #损失函数
    criterion = nn.CrossEntropyLoss() 
    #优化器
    optimizer = optim.Adam(net.parameters(), lr=0.001) #定义优化器,普通的随机梯度下降算法#开始训练循环
    for epoch in range(num_epochs):#当前epoch的结果保存下来train_rights = [] for batch_idx, (data, target) in enumerate(train_loader):  #针对容器中的每一个批进行循环net.train()                             output = net(data) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() right = accuracy(output, target) train_rights.append(right) if batch_idx % 100 == 0: net.eval() val_rights = [] for (data, target) in test_loader:output = net(data) right = accuracy(output, target) val_rights.append(right)#准确率计算train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(epoch, batch_idx * batch_size, len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.data, 100. * train_r[0].numpy() / train_r[1], 100. * val_r[0].numpy() / val_r[1]))
    当前epoch: 0 [0/60000 (0%)]	损失: 2.300918	训练集准确率: 10.94%	测试集正确率: 10.10%
    当前epoch: 0 [6400/60000 (11%)]	损失: 0.204191	训练集准确率: 78.06%	测试集正确率: 93.31%
    当前epoch: 0 [12800/60000 (21%)]	损失: 0.039503	训练集准确率: 86.51%	测试集正确率: 96.69%
    当前epoch: 0 [19200/60000 (32%)]	损失: 0.057866	训练集准确率: 89.93%	测试集正确率: 97.54%
    当前epoch: 0 [25600/60000 (43%)]	损失: 0.069566	训练集准确率: 91.68%	测试集正确率: 97.68%
    当前epoch: 0 [32000/60000 (53%)]	损失: 0.228793	训练集准确率: 92.85%	测试集正确率: 98.18%
    当前epoch: 0 [38400/60000 (64%)]	损失: 0.111003	训练集准确率: 93.72%	测试集正确率: 98.16%
    当前epoch: 0 [44800/60000 (75%)]	损失: 0.110226	训练集准确率: 94.28%	测试集正确率: 98.44%
    当前epoch: 0 [51200/60000 (85%)]	损失: 0.014538	训练集准确率: 94.78%	测试集正确率: 98.60%
    当前epoch: 0 [57600/60000 (96%)]	损失: 0.051019	训练集准确率: 95.14%	测试集正确率: 98.45%
    当前epoch: 1 [0/60000 (0%)]	损失: 0.036383	训练集准确率: 98.44%	测试集正确率: 98.68%
    当前epoch: 1 [6400/60000 (11%)]	损失: 0.088116	训练集准确率: 98.50%	测试集正确率: 98.37%
    当前epoch: 1 [12800/60000 (21%)]	损失: 0.120306	训练集准确率: 98.59%	测试集正确率: 98.97%
    当前epoch: 1 [19200/60000 (32%)]	损失: 0.030676	训练集准确率: 98.63%	测试集正确率: 98.83%
    当前epoch: 1 [25600/60000 (43%)]	损失: 0.068475	训练集准确率: 98.59%	测试集正确率: 98.87%
    当前epoch: 1 [32000/60000 (53%)]	损失: 0.033244	训练集准确率: 98.62%	测试集正确率: 99.03%
    当前epoch: 1 [38400/60000 (64%)]	损失: 0.024162	训练集准确率: 98.67%	测试集正确率: 98.81%
    当前epoch: 1 [44800/60000 (75%)]	损失: 0.006713	训练集准确率: 98.69%	测试集正确率: 98.17%
    当前epoch: 1 [51200/60000 (85%)]	损失: 0.009284	训练集准确率: 98.69%	测试集正确率: 98.97%
    当前epoch: 1 [57600/60000 (96%)]	损失: 0.036536	训练集准确率: 98.68%	测试集正确率: 98.97%
    当前epoch: 2 [0/60000 (0%)]	损失: 0.125235	训练集准确率: 98.44%	测试集正确率: 98.73%
    当前epoch: 2 [6400/60000 (11%)]	损失: 0.028075	训练集准确率: 99.13%	测试集正确率: 99.17%
    当前epoch: 2 [12800/60000 (21%)]	损失: 0.029663	训练集准确率: 99.26%	测试集正确率: 98.39%
    当前epoch: 2 [19200/60000 (32%)]	损失: 0.073855	训练集准确率: 99.20%	测试集正确率: 98.81%
    当前epoch: 2 [25600/60000 (43%)]	损失: 0.018130	训练集准确率: 99.16%	测试集正确率: 99.09%
    当前epoch: 2 [32000/60000 (53%)]	损失: 0.006968	训练集准确率: 99.15%	测试集正确率: 99.11%
    

相关文章:

pytorch-构建卷积神经网络

构建卷积神经网络 卷积网络中的输入和层与传统神经网络有些区别,需重新设计,训练模块基本一致 import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets,transforms impor…...

点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取(续)

目录 3.3 点云滤波算法原理概述 3.3.1 坡度滤波算法 3.3.2 基于不规则三角网滤波 3.3.3 数学形态学滤波...

Gartner发布中国科技报告:数据编织和大模型技术崭露头角

近日,全球知名科技研究和咨询机构Gartner发布了关于中国数据分析与人工智能技术的最新报告。报告指出,中国正迎来数据分析与人工智能领域的蓬勃发展,预计到2026年,将有超过30%的白领工作岗位重新定义,生成式人工智能技…...

java八股文面试[数据库]——explain

使用 EXPLAIN 关键字可以模拟优化器来执行SQL查询语句,从而知道MySQL是如何处理我们的SQL语句的。分析出查询语句或是表结构的性能瓶颈。 MySQL查询过程 通过explain我们可以获得以下信息: 表的读取顺序 数据读取操作的操作类型 哪些索引可以被使用 …...

Kafka3.0.0版本——增加副本因子

目录 一、服务器信息二、启动zookeeper和kafka集群2.1、先启动zookeeper集群2.2、再启动kafka集群 三、增加副本因子3.1、增加副本因子的概述3.2、增加副本因子的示例3.2.1、创建topic(主题)3.2.2、手动增加副本存储 一、服务器信息 四台服务器 原始服务器名称原始服务器ip节点…...

升级iOS 17出现白苹果、不断重启等系统问题怎么办?

iOS 17发布后了,很多果粉都迫不及待的将iphone/ipad升级到最新iOS17系统,体验新系统功能。 但部分果粉因硬件、软件的各种情况,导致升级系统后出现故障,比如白苹果、不断重启、卡在系统升级界面等等问题。 如果遇到了这些系统问题…...

6. `Java` 并发基础之`ReentrantReadLock`

前言:随着多线程程序的普及,线程同步的问题变得越来越常见。Java中提供了多种同步机制来确保线程安全,其中之一就是ReentrantLock。ReentrantLock是Java中比较常用的一种同步机制,它提供了一系列比synchronized更加灵活和可控的操…...

float浮动布局大战position定位布局

华子目录 布局方式普通文档流布局浮动布局(浮动主要针对与black,inline元素)float属性浮动用途浮动元素父级高度塌陷 position属性定位篇相对定位(relative为属性值,配合left属性,和top属性使用&#xff09…...

算法 数据结构 递归插入排序 java插入排序 递归求解插入排序算法 如何用递归写插入排序 插入排序动图 插入排序优化 数据结构(十)

1. 插入排序(insertion-sort): 是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入 算法稳定性: 对于两个相同的数,经过…...

OpenCV(二十二):均值滤波、方框滤波和高斯滤波

目录 1.均值滤波 2.方框滤波 3.高斯滤波 1.均值滤波 OpenCV中的均值滤波(Mean Filter)是一种简单的滤波技术,用于平滑图像并减少噪声。它的原理非常简单:对于每个像素,将其与其周围邻域内像素的平均值作为新的像素值…...

二叉树的递归遍历和非递归遍历

目录 一.二叉树的递归遍历 1.先序遍历二叉树 2.中序遍历二叉树 3.后序遍历二叉树 二.非递归遍历(栈) 1.先序遍历 2.中序遍历 3.后序遍历 一.二叉树的递归遍历 定义二叉树 #其中TElemType可以是int或者是char,根据要求自定 typedef struct BiNode{TElemType data;stru…...

JDK17:未来已来,你准备好了吗?

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

K8s和Docker

Kubernetes(简称为K8s)和Docker是两个相关但又不同的技术。 一、Docker 1、Docker是一种容器化平台,用于将应用程序及其依赖项打包成可移植的容器。 2、Docker容器可以在任何支持Docker的操作系统上运行 好处:提供了一种轻量级…...

使用物理机服务器应该注意的事项

使用物理机服务器应该注意的事项 如今云计算的发展已经遍布各大领域,尽管现在的云服务器火遍全网,但是仍有一些大型企业依旧选择使用独立物理服务器,你知道这是为什么吗?壹基比小鑫来告诉你吧。 独立物理服务器托管业务适合大中…...

py脚本解决ArcGIS Server服务内存过大的问题

在一台服务器上,使用ArcGIS Server发布地图服务,但是地图服务较多,在发布之后,服务器的内存持续处在95%上下的高位状态,导致服务器运行状态不稳定,经常需要重新启动。重新启动后重新进入这种内存高位的陷阱…...

Go语言Web开发入门指南

Go语言Web开发入门指南 欢迎来到Go语言的Web开发入门指南。Go语言因其出色的性能和并发支持而成为Web开发的热门选择。在本篇文章中,我们将介绍如何使用Go语言构建简单的Web应用程序,包括路由、模板、数据库连接和静态文件服务。 准备工作 在开始之前…...

保姆级教程——VSCode如何在Mac上配置C++的运行环境

vscode官方下载: 点击官网链接,下载对应的pkg,安装打开; https://code.visualstudio.com/插件安装 点击箭头所指插件商店按钮,yyds; 下载C/C 插件; ![外链图片转存 下载CodeLLDB插件&#x…...

Java 操作FTP服务器进行下载文件

用Java去操作FTP服务器去做下载,本文章里面分为单个下载和批量下载,批量下载只不过多了一层循环,为了方便参考,我代码都贴出来了。 不管单个下载还是多个,一定要记得,远程服务器的直接写文件夹路径&#xf…...

物理机服务器应该注意的事

物理机服务器应该注意的事 1、选址 服务器是个非常重要的硬件产品,对机房的也是有一定的要求的,比如温度、安全性,噪音、电源稳定性等等问题都需要解决!但是不是每个人都会选择自己建立一个机房,毕竟各方面加起来的成本都太高。这…...

信息化发展24

信息技术的发展 1 )在计算机软硬件方面, 计算机硬件技术将向超高速、超小型、平行处理、智能化的方向发展, 计算机硬件设备的体积越来越小、速度越来越高、容量越来越大、功耗越来越低、可靠性越来越高。 2 )计算机软件越来越丰富…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...