利用微调的deberta-v3-large来预测情感分类
前言:
昨天我们讲述了怎么利用emotion数据集进行deberta-v3-large大模型的微调,那今天我们就来输入一些数据来测试一下,看看模型的准确率,为了方便起见,我直接用测试集的前十条数据
代码:
from transformers import AutoModelForSequenceClassification,AutoTokenizer
import torch
import numpytokenizer = AutoTokenizer.from_pretrained("deberta-v3-large")
model = AutoModelForSequenceClassification.from_pretrained("result/checkpoint-500",num_labels=6)raw_inputs = ["im feeling rather rotten so im not very ambitious right now","im updating my blog because i feel shitty","i never make her separate from me because i don t ever want her to feel like i m ashamed with her","i left with my bouquet of red and yellow tulips under my arm feeling slightly more optimistic than when i arrived","i was feeling a little vain when i did this one","i cant walk into a shop anywhere where i do not feel uncomfortable","i felt anger when at the end of a telephone call","i explain why i clung to a relationship with a boy who was in many ways immature and uncommitted despite the excitement i should have been feeling for g
etting accepted into the masters program at the university of virginia","i like to have the same breathless feeling as a reader eager to see what will happen next","i jest i feel grumpy tired and pre menstrual which i probably am but then again its only been a week and im about as fit as a walrus on vacation for thesummer"
]
inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs)
print(outputs.logits.argmax(-1).numpy())output_tensor = torch.softmax(outputs.logits, dim=1)numpy.set_printoptions(suppress=True, precision=15)
print(output_tensor.detach().numpy())
标注结果:
[0 0 0 1 0 4 3 1 1 3]
测试结果:
[0 0 0 1 0 4 4 2 1 3]
[[0.99185866 0.0011510316 0.00038844926 0.0026896652 0.00296234010.00094986777][0.9918577 0.0011512033 0.00038886679 0.0026923663 0.00295853150.000951257 ][0.99185807 0.0011446937 0.00038163515 0.0026456509 0.00303544850.00093440723][0.00041773843 0.9972398 0.0014854104 0.0002909223 0.000362315240.00020376328][0.99185014 0.0011451623 0.00038086114 0.0026396883 0.00305240350.00093187904][0.015044774 0.0025362356 0.00041989447 0.015223678 0.950097140.016678285 ][0.11319714 0.030935207 0.007336047 0.3035547 0.475454330.069522515 ][0.0011094044 0.18334262 0.8081213 0.0011003793 0.00072979650.005596481 ][0.0004444314 0.9972433 0.0014491597 0.00028465112 0.000374119760.00020446534][0.00241266 0.00079152075 0.00092184055 0.9924028 0.00241092480.0010602956 ]]
结果对比:
除了第七、第八条数据错误外,其他的八条数据都是正确的
代码解释:
1、raw_inputs:用户输入的数据,这个地方你可以使用一个while循环,然后使用input来与用户进行交互,需要注意的是这个必须是一个数组,哪怕用户只输入了一句文本。
2、return_tensors="pt":表示tokenizer返回的是PyTorch格式的数据
3、argmax(-1):将logits属性中的浮点数张量沿着最后一个轴(即-1轴)进行argmax操作,从而找到该张量中最大值所对应的标签编号。
4、softmax(outputs.logits, dim=1):dim指沿着哪个维度计算softmax,通常指定为1,表示对每一行进行softmax操作。如果不指定,则默认在最后一维计算softmax。
5、numpy.set_printoptions(suppress=True, precision=15):使用 numpy.set_printoptions()
函数来设置打印选项,从而调整打印输出格式。其中,suppress
选项可以关闭科学计数法,precision
选项可以设置打印精度。
相关文章:

利用微调的deberta-v3-large来预测情感分类
前言: 昨天我们讲述了怎么利用emotion数据集进行deberta-v3-large大模型的微调,那今天我们就来输入一些数据来测试一下,看看模型的准确率,为了方便起见,我直接用测试集的前十条数据 代码: from transfor…...

opencv旋转图像
0 、使用旋转矩阵旋转 import cv2img cv2.imread(img.jpg, 1) (h, w) img.shape[:2] # 获取图像的宽和高# 定义旋转中心坐标 center (w / 2, h / 2)# 定义旋转角度 angle 90# 定义缩放比例 scale 1# 获得旋转矩阵 M cv2.getRotationMatrix2D(center, angle, scale)# 进行…...

容器资料: Docker和Singularity
容器资料 Docker和Singularity Docker比较适合测试: 环境适配,每种环境对应一个容器。Docker需要host宿主机上运行Docker服务(root权限),隔离性很高,但会牺牲性能,对GPU环境支持不好(需要安装NVIDIAN公司的插件才能把GPU暴露给container) Sigularity可…...

如何确认linux的包管理器是yum还是apt,确认之后安装其他程序的时候就需要注意安装命令
打开终端 输入apt,下图中提示未找到命令,则基本上包管理工具就是用yum的 输入yum,我们看到有打印信息,则说明包管理工具是yum的,离线安装命令使用rpm...

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法...
全文链接:http://tecdat.cn/?p30131 最近我们被客户要求撰写关于上海空气质量指数的研究报告。本文向大家介绍R语言对上海PM2.5等空气质量数据(查看文末了解数据免费获取方式)间的相关分析和预测分析,主要内容包括其使用实例&…...

MySQL 8.0.34安装教程
一、下载MySQL 1.官网下载 MySQL官网下载地址: MySQL :: MySQL Downloads ,选择下载社区版(平时项目开发足够了) 2.点击下载MySQL Installer for Windows 3.选择版本8.0.34,并根据自己需求,选择下载全社区安…...

用通俗易懂的方式讲解大模型分布式训练并行技术:概述
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,传统的单机单卡模式已经无法满足超大模型进行训练的要求。因此,我们需要基于单机多卡、甚至是多机多卡进行分布式大模型的训练。 而利用AI集群&a…...

NodeJS入门以及文件模块fs模块
NodeJS入门以及文件模块fs模块,本章节会详细带大家进入NodeJS开发,了解什么是模块化、文件系统 模块化的详解什么是模块什么是模块化ESM模块化开发CommonJS模块化操作 模块的分类内置模块 一个小知识Buffer的使用buffer常见的方法 事件监听模块events常用…...

springboot集成Elasticsearch7.16,使用https方式连接并忽略SSL证书
千万万苦利用科学上网找到了,记录一下 package com.warn.config.baseconfig;import co.elastic.clients.elasticsearch.ElasticsearchClient; import co.elastic.clients.json.jackson.JacksonJsonpMapper; import co.elastic.clients.transport.ElasticsearchTran…...

【已解决】pycharm 突然每次点击都开新页面,关不掉怎么办?
今天在 pycharm 中写代码,突然发现,新开的文件不再原来的页面上,而是新增了页面,导致整个屏幕全都是新开的页面,最难受的是,关不掉! 无奈,我只能关闭 pycharm,重新双击…...

AndroidStudio最下方显示不出来Terminal等插件
File->Settings->Plugins 然后在上面的输入框中输入Terminal,并将最右侧的对勾打上即可。 安装即可...

python基础操作笔记
一,pickle读写json格式文件pkl k Out[15]: {k1: 2, k3: 4}with open("test822.pkl","wb") as f:pickle.dump(k,f,) with open("test822.pkl","rb") as f:kk=pickle.load(f)kk==k Out[20]: True 二、docker删除image docker rmi …...

c++ 学习 之 指针常量 和 常量指针
前言 在 C 中,指针常量(constant pointer)和常量指针(pointer to constant)是两种不同类型的指针,它们具有不同的含义和用途。 正文 指针常量(constant pointer): 指针…...

Redis未授权访问漏洞实战
文章目录 概述Redis概述Redis 介绍Redis 简单使用Redis未授权漏洞危害 漏洞复现启动靶场环境POC漏洞验证EXP漏洞利用 总结 本次测试仅供学习使用,如若非法他用,与平台和本文作者无关,需自行负责! 概述 本文章主要是针对于vulh…...

【web开发】2、css基础
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、CSS是什么?二、使用步骤2.1.css的存放位置2.2.选择器2.3.常用CSS样式介绍与示例 一、CSS是什么? 层叠样式表(英文全称:Casc…...

循迹小车原理介绍和代码示例
目录 循迹小车 1. 循迹模块使用 2. 循迹小车原理 3. 循迹小车开发和调试代码 循迹小车 1. 循迹模块使用 TCRT5000传感器的红外发射二极管不断发射红外线当发射出的红外线没有被反射回来或被反射回来但强度不够大时红外接收管一直处于关断状态,此时模块的输出…...

redis未授权访问
文章目录 搭建环境漏洞复现安装Exlopit并使用 前提条件: 1.安装docker docker pull medicean/vulapps:j_joomla_22.安装docker-compose docker run -d -p 8000:80 medicean/vulapps:j_joomla_23.下载vulhub 搭建环境 输入下面命令,来到Redis的路径下&am…...

【数学建模竞赛】优化类赛题常用算法解析
优化类建模 问题理解和建模:首先,需要深入理解问题,并将问题抽象为数学模型。这包括确定问题的目标函数、约束条件和决策变量。 模型分析和求解方法选择:对建立的数学模型进行分析,可以使用数学工具和方法,…...

Python实现SSA智能麻雀搜索算法优化LightGBM回归模型(LGBMRegressor算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出&a…...

OpenCV(二十一):椒盐噪声和高斯噪声的产生
目录 1.图像噪声介绍 2.椒盐噪声的产生 3.高斯噪声的产生 1.图像噪声介绍 噪声介绍 图像噪声是指在图像中存在的不期望的、随机的像素值变化,这些变化来源于多种因素。噪声可能导致图像细节模糊、失真或难以分辨。 以下是几种常见的图像噪声类型: 1…...

【设计模式】Head First 设计模式——构建器模式 C++实现
设计模式最大的作用就是在变化和稳定中间寻找隔离点,然后分离它们,从而管理变化。将变化像小兔子一样关到笼子里,让它在笼子里随便跳,而不至于跳出来把你整个房间给污染掉。 设计思想 将一个复杂对象的构建与其表示相分离&…...

基于Python+Django深度学习的身份证识别考勤系统设计与实现
摘 要 我们的生活都是由信息技术在潜移默化的改变着,那么早先改变校园生活的是校园信息化,改变社会人生活是各种应用软件。出行我们依靠的是滴滴,外卖我们依靠的是美团等等。从信息技术的发展至今,各色各样的技术能够满足各类人群…...

Unity控制程序退出
大家好,我是阿赵。 最近把公司的游戏发布到各种PC的游戏大厅,遇到了挺多奇怪的需求。之前介绍了一些Unity发布PC端控制窗口最大最小化、修改exe信息等问题,这次来探讨一下退出游戏的问题。 一、收到奇怪的需求 某游戏大厅要求࿰…...

C++ using的多种用法
1、引入命名空间 using namespace std; using std::cout; 2、引入基类成员 class Base{ public:void func(){cout << "Base::func()" << endl;} }; class Derived : public Base{ public:using Base::func;void func(int x){cout << "Deriv…...

Java环境的安装
最近博主也是在学校开始学习了Java,也通过老师知道了可以通过大学生学生证申(bai)请(piao) IDEA的企业版(社区版也是够学习用的)有很多同学还是没有搞懂便做一下分享。 🌱博客主页:青竹雾色间. 😘博客制作…...

【ES6】js中的__proto__和prototype
在JavaScript中,__proto__和prototype都是用于实现对象继承的关键概念。 1、proto __proto__是一个非标准的属性,用于设置或获取一个对象的原型。这个属性提供了直接访问对象内部原型对象的途径。对于浏览器中的宿主对象和大多数对象来说,可…...

工程项目管理系统源码-简洁+好用+全面-工程项目管理
工程项目管理系统是指从事工程项目管理的企业(以下简称工程项目管理企业)受业主委托,按照合同约定,代表业主对工程项目的组织实施进行全过程或若干阶段的管理和服务。 系统定义 工程项目管理企业不直接与该工程项目的总承包企…...

后端SpringBoot+前端Vue前后端分离的项目(二)
前言:完成一个列表,实现表头的切换,字段的筛选,排序,分页功能。 目录 一、数据库表的设计 编辑二、后端实现 环境配置 model层 mapper层 service层 service层单元测试 controller层 三、前端实现 interface接…...

【5】openGL使用宏和函数进行错误检测
当我们编写openGL程序,没有报编译链接错误,但是运行结果是黑屏,这不是我们想要的。 openGL提供了glGetError 来检查错误,我们可以通过在运行时进行打断点查看glGetError返回值,得到的是一个十进制数,将其转…...

STM32 CAN快速配置(HAL库版本)
STM32 CAN快速配置(HAL库版本) 目录 STM32 CAN快速配置(HAL库版本)前言1 软件编程1.1 初始化1.1.1 引脚设置1.1.2 CAN参数设置1.1.3 CAN滤波器设置 1.2 CAN发送1.3 CAN接收 2 运行测试结束语 前言 控制器局域网总线(CA…...