当前位置: 首页 > news >正文

利用微调的deberta-v3-large来预测情感分类

前言:

昨天我们讲述了怎么利用emotion数据集进行deberta-v3-large大模型的微调,那今天我们就来输入一些数据来测试一下,看看模型的准确率,为了方便起见,我直接用测试集的前十条数据

代码:

from transformers import AutoModelForSequenceClassification,AutoTokenizer
import torch
import numpytokenizer = AutoTokenizer.from_pretrained("deberta-v3-large")
model = AutoModelForSequenceClassification.from_pretrained("result/checkpoint-500",num_labels=6)raw_inputs = ["im feeling rather rotten so im not very ambitious right now","im updating my blog because i feel shitty","i never make her separate from me because i don t ever want her to feel like i m ashamed with her","i left with my bouquet of red and yellow tulips under my arm feeling slightly more optimistic than when i arrived","i was feeling a little vain when i did this one","i cant walk into a shop anywhere where i do not feel uncomfortable","i felt anger when at the end of a telephone call","i explain why i clung to a relationship with a boy who was in many ways immature and uncommitted despite the excitement i should have been feeling for g
etting accepted into the masters program at the university of virginia","i like to have the same breathless feeling as a reader eager to see what will happen next","i jest i feel grumpy tired and pre menstrual which i probably am but then again its only been a week and im about as fit as a walrus on vacation for thesummer"
]
inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs)
print(outputs.logits.argmax(-1).numpy())output_tensor = torch.softmax(outputs.logits, dim=1)numpy.set_printoptions(suppress=True, precision=15)
print(output_tensor.detach().numpy())

标注结果:

[0 0 0 1 0 4 3 1 1 3]

测试结果:

[0 0 0 1 0 4 4 2 1 3]
[[0.99185866    0.0011510316  0.00038844926 0.0026896652  0.00296234010.00094986777][0.9918577     0.0011512033  0.00038886679 0.0026923663  0.00295853150.000951257  ][0.99185807    0.0011446937  0.00038163515 0.0026456509  0.00303544850.00093440723][0.00041773843 0.9972398     0.0014854104  0.0002909223  0.000362315240.00020376328][0.99185014    0.0011451623  0.00038086114 0.0026396883  0.00305240350.00093187904][0.015044774   0.0025362356  0.00041989447 0.015223678   0.950097140.016678285  ][0.11319714    0.030935207   0.007336047   0.3035547     0.475454330.069522515  ][0.0011094044  0.18334262    0.8081213     0.0011003793  0.00072979650.005596481  ][0.0004444314  0.9972433     0.0014491597  0.00028465112 0.000374119760.00020446534][0.00241266    0.00079152075 0.00092184055 0.9924028     0.00241092480.0010602956 ]]

结果对比:

除了第七、第八条数据错误外,其他的八条数据都是正确的

代码解释:

1、raw_inputs:用户输入的数据,这个地方你可以使用一个while循环,然后使用input来与用户进行交互,需要注意的是这个必须是一个数组,哪怕用户只输入了一句文本。

2、return_tensors="pt":表示tokenizer返回的是PyTorch格式的数据

3、argmax(-1):将logits属性中的浮点数张量沿着最后一个轴(即-1轴)进行argmax操作,从而找到该张量中最大值所对应的标签编号。

4、softmax(outputs.logits, dim=1):dim指沿着哪个维度计算softmax,通常指定为1,表示对每一行进行softmax操作。如果不指定,则默认在最后一维计算softmax。

5、numpy.set_printoptions(suppress=True, precision=15):使用 numpy.set_printoptions() 函数来设置打印选项,从而调整打印输出格式。其中,suppress 选项可以关闭科学计数法,precision 选项可以设置打印精度。

相关文章:

利用微调的deberta-v3-large来预测情感分类

前言: 昨天我们讲述了怎么利用emotion数据集进行deberta-v3-large大模型的微调,那今天我们就来输入一些数据来测试一下,看看模型的准确率,为了方便起见,我直接用测试集的前十条数据 代码: from transfor…...

opencv旋转图像

0 、使用旋转矩阵旋转 import cv2img cv2.imread(img.jpg, 1) (h, w) img.shape[:2] # 获取图像的宽和高# 定义旋转中心坐标 center (w / 2, h / 2)# 定义旋转角度 angle 90# 定义缩放比例 scale 1# 获得旋转矩阵 M cv2.getRotationMatrix2D(center, angle, scale)# 进行…...

容器资料: Docker和Singularity

容器资料 Docker和Singularity Docker比较适合测试: 环境适配,每种环境对应一个容器。Docker需要host宿主机上运行Docker服务(root权限),隔离性很高,但会牺牲性能,对GPU环境支持不好(需要安装NVIDIAN公司的插件才能把GPU暴露给container) Sigularity可…...

如何确认linux的包管理器是yum还是apt,确认之后安装其他程序的时候就需要注意安装命令

打开终端 输入apt,下图中提示未找到命令,则基本上包管理工具就是用yum的 输入yum,我们看到有打印信息,则说明包管理工具是yum的,离线安装命令使用rpm...

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法...

全文链接:http://tecdat.cn/?p30131 最近我们被客户要求撰写关于上海空气质量指数的研究报告。本文向大家介绍R语言对上海PM2.5等空气质量数据(查看文末了解数据免费获取方式)间的相关分析和预测分析,主要内容包括其使用实例&…...

MySQL 8.0.34安装教程

一、下载MySQL 1.官网下载 MySQL官网下载地址: MySQL :: MySQL Downloads ,选择下载社区版(平时项目开发足够了) 2.点击下载MySQL Installer for Windows 3.选择版本8.0.34,并根据自己需求,选择下载全社区安…...

用通俗易懂的方式讲解大模型分布式训练并行技术:概述

近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,传统的单机单卡模式已经无法满足超大模型进行训练的要求。因此,我们需要基于单机多卡、甚至是多机多卡进行分布式大模型的训练。 而利用AI集群&a…...

NodeJS入门以及文件模块fs模块

NodeJS入门以及文件模块fs模块,本章节会详细带大家进入NodeJS开发,了解什么是模块化、文件系统 模块化的详解什么是模块什么是模块化ESM模块化开发CommonJS模块化操作 模块的分类内置模块 一个小知识Buffer的使用buffer常见的方法 事件监听模块events常用…...

springboot集成Elasticsearch7.16,使用https方式连接并忽略SSL证书

千万万苦利用科学上网找到了,记录一下 package com.warn.config.baseconfig;import co.elastic.clients.elasticsearch.ElasticsearchClient; import co.elastic.clients.json.jackson.JacksonJsonpMapper; import co.elastic.clients.transport.ElasticsearchTran…...

【已解决】pycharm 突然每次点击都开新页面,关不掉怎么办?

今天在 pycharm 中写代码,突然发现,新开的文件不再原来的页面上,而是新增了页面,导致整个屏幕全都是新开的页面,最难受的是,关不掉! 无奈,我只能关闭 pycharm,重新双击…...

AndroidStudio最下方显示不出来Terminal等插件

File->Settings->Plugins 然后在上面的输入框中输入Terminal,并将最右侧的对勾打上即可。 安装即可...

python基础操作笔记

一,pickle读写json格式文件pkl k Out[15]: {k1: 2, k3: 4}with open("test822.pkl","wb") as f:pickle.dump(k,f,) with open("test822.pkl","rb") as f:kk=pickle.load(f)kk==k Out[20]: True 二、docker删除image docker rmi …...

c++ 学习 之 指针常量 和 常量指针

前言 在 C 中,指针常量(constant pointer)和常量指针(pointer to constant)是两种不同类型的指针,它们具有不同的含义和用途。 正文 指针常量(constant pointer): 指针…...

Redis未授权访问漏洞实战

文章目录 概述Redis概述Redis 介绍Redis 简单使用Redis未授权漏洞危害 漏洞复现启动靶场环境POC漏洞验证EXP漏洞利用 总结 本次测试仅供学习使用,如若非法他用,与平台和本文作者无关,需自行负责! 概述 ​ 本文章主要是针对于vulh…...

【web开发】2、css基础

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、CSS是什么?二、使用步骤2.1.css的存放位置2.2.选择器2.3.常用CSS样式介绍与示例 一、CSS是什么? 层叠样式表(英文全称:Casc…...

循迹小车原理介绍和代码示例

目录 循迹小车 1. 循迹模块使用 2. 循迹小车原理 3. 循迹小车开发和调试代码 循迹小车 1. 循迹模块使用 TCRT5000传感器的红外发射二极管不断发射红外线当发射出的红外线没有被反射回来或被反射回来但强度不够大时红外接收管一直处于关断状态,此时模块的输出…...

redis未授权访问

文章目录 搭建环境漏洞复现安装Exlopit并使用 前提条件: 1.安装docker docker pull medicean/vulapps:j_joomla_22.安装docker-compose docker run -d -p 8000:80 medicean/vulapps:j_joomla_23.下载vulhub 搭建环境 输入下面命令,来到Redis的路径下&am…...

【数学建模竞赛】优化类赛题常用算法解析

优化类建模 问题理解和建模:首先,需要深入理解问题,并将问题抽象为数学模型。这包括确定问题的目标函数、约束条件和决策变量。 模型分析和求解方法选择:对建立的数学模型进行分析,可以使用数学工具和方法,…...

Python实现SSA智能麻雀搜索算法优化LightGBM回归模型(LGBMRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出&a…...

OpenCV(二十一):椒盐噪声和高斯噪声的产生

目录 1.图像噪声介绍 2.椒盐噪声的产生 3.高斯噪声的产生 1.图像噪声介绍 噪声介绍 图像噪声是指在图像中存在的不期望的、随机的像素值变化,这些变化来源于多种因素。噪声可能导致图像细节模糊、失真或难以分辨。 以下是几种常见的图像噪声类型: 1…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

爬虫基础学习day2

# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...