最强的AI视频去码图片修复模型:CodeFormer
目录
1 CodeFormer介绍
1.1 CodeFormer解决的问题
1.2 人脸复原的挑战
1.3 方法动机
1.4 模型实现
1.5 实验结果
2 CodeFormer部署与运行
2.1 conda环境安装
2.2 运行环境构建
2.3 模型下载
2.4 运行
2.4.1 人脸复原
编辑编辑
2.4.2 全图片增强
2.4.3 人脸颜色增强
2.4.4 人脸补全
2.4.5 视频增强
3 安装问题定位与解决
3.1 安装错误描述
3.2 问题分析
3.3 问题解决
1 CodeFormer介绍
1.1 CodeFormer解决的问题
CodeFormer是由南洋理工大学-商汤科技联合研究中心S-Lab在NeurIPS 2022上提出的一种基于VQGAN+Transformer的人脸复原模型。该方法基于预训练VQGAN离散码本空间,改变复原任务的固有范式,将人脸复原任务转成Code序列的预测任务,大幅度降低了复原任务映射的不确定性,同时VQGAN的码本先验也为复原任务提供了丰富的人脸细节。最后,通过Transformer全局建模,进一步增加了模型对严重退化的鲁棒性,使得复原的人脸更加真实。
- 论文地址:https://arxiv.org/pdf/2206.11253.pdf
- 代码地址:https://github.com/sczhou/CodeFormer
主要用途:
- 老照片修复与增强
- 面部修复
- 面部颜色增强和修复
- 马赛克还原
1.2 人脸复原的挑战
人脸复原任务面临的诸多挑战:
图片复原任务中的共性问题:高度不适定性。
低清图像(LQ)和潜在的高清图像(HQ)存在多对多的映射关系,如下图所示。这种多解的映射使得网络在学习过程中产生疑惑,无法获得一个高质量的输出,且退化越严重,这种不适应性就会越大。“如何才能降低这种映射的不确定性”是其挑战之一。
纹理细节丢失
从上图可以看出,真实场景的低清人脸图片中往往会引入各种退化,包括噪声、JPEG压缩伪影、模糊、下采样等。这些退化不同程度地损害了原有人脸纹理细节,造成信息丢失。“如何更好地补充真实高清纹理”也一直是人脸复原的一大难题。
人脸身份丢失
以上两点都会导致人脸复原的结果很难保持身份的一致性。然而现实应用中又往往对输出人脸的身份一致性有着很高的要求,在输出高清人脸细节的同时,又要与低清人脸的身份保持一致,这无疑增加了复原过程的难度。
1.3 方法动机
我们首先引入了VQGAN的离散码本空间来缓解以上 (1)、(2) 两个问题。有限且离散的映射空间大大降低了复原任务映射的不适定性 (1)。通过VQGAN的自重建训练,码本先验保存了丰富的高清人脸纹理信息,帮助复原任务补充真实的人脸纹理细节 (2)。
如下图所示,相比连续先验空间 (d、e),离散码本空间 (f、g) 可以输出更高质量的结果 (没有伪影),保持完好脸庞轮廓的同时,也展现出更真实、细致的纹理。
如何更准确地得到Code序列呢?我们对比分析了两种不同Code序列的查找方式:最近邻特征查找 (f) 和基于Transformer预测 (g),我们发现基于Transformer预测 (g)会得到更准确的Code序列,即生成更高质量的人脸图像且保持更好的身份一致性,如上图所示。
我们进一步发现,基于VQGAN最近邻特征查找的Code序列查询方式并不适用于低清图像。通过对高清 (HQ) 和低清 (LQ) 特征进行聚类可视化,我们分析了原因,如上图所示。
由于VQGAN的码本通过存储HQ的Code来重建高清人脸图,HQ特征分布在准确的Code簇附近,因此HQ特征可以通过最近邻来进行Code查找。然而,LQ特征丢失了大量的纹理信息,导致其分布到错误的Code簇中 (即便Finetune过Encoder)。
由此得出,最近邻Code查找对于LQ特征并不是最优的解决方案,我们通过Transformer进行全局人脸建模,缓解了局部特征最近邻查找带来的不准确性,从而找到更准确的Code序列,使得模型对严重细节损失更为鲁棒,复原的人脸图片也更加自然。
虽然Transformer可以缓解身份不一致的问题 (3),但由于VQGAN的码本空间并不能100%完美地重建出任意人脸,比如个人特有面部特征或首饰,因此引入可调节特征融合模块来控制对输入LQ人脸的依赖。
当输入LQ图像退化轻微时,LQ特征很好地保留了个人的身份信息,因此该模块倾向于融合更多的输入信息,使得模型输出和输入图保持身份一致;当输入LQ图像退化严重时,LQ特征中个人的身份信息已经严重损坏且包含了大量的退化噪声,无法对输出身份一致性提供太大的帮助,因此该模块倾向于融合较少的输入信息,从而降低退化对输出质量的影响。
1.4 模型实现
了解本文动机后,这里简单介绍一下本文方法,实现细节请查看原文和代码。
该方法分为3个训练过程:
Stage I:Codebook Learning
首先通过高清人脸自我重建学习,训练VQGAN,从而得到HQ码本空间作为本文的离散人脸先验。为了降低LQ-HQ映射之间的不确定性,我们设计尽量小的码本空间和尽量短的Code序列作为人脸的离散表达。因此,我们采用了大的压缩比 (32倍),即将原来的人脸图片压缩为的离散Code序列。该设计使得码本中Code具有更丰富的上下文信息,有助于提升网络表达能力以及鲁棒性。
Stage II:Codebook Lookup Transformer Learning
基于得到的码本空间,我们在原来Encoder后又嵌入一个Transformer模块对特征全局建模,以达成更好的Code序列预测。该阶段固定Decoder和Codebook,只需学习Transformer模块并微调Encoder。将原本的复原任务转变为离散Code序列预测任务,改变了复原任务的固有范式,这也是本文的主要贡献之一。
Stage III:Controllable Feature Transformation
尽管Stage II已经实现非常好的人脸复原,我们还希望在人脸复原的质量和保真方面达成更灵活的权衡。因此,该阶段引入可控特征融合模块 (CFT) 来控制Encoder特征和Decode特征 的融合,即:
从而达到:当调小,模型输出质量更高;当调大,模型输出能保持更好的身份一致性。如下图示例,随着 变大,输出人脸身份越来越像输入图,个人特征 (如眉中痔) 也逐渐恢复。
1.5 实验结果
CodeFormer在人脸复原、人脸颜色增强以及人脸补全三个任务上均表现出了优势,此处只展示输出结果,和其他方法的对比和消融实验请查看原文。
- 人脸复原
- 人脸补全
- 人脸颜色增强
- AI生成人脸校正
- 老照片修复
2 CodeFormer部署与运行
2.1 conda环境安装
conda环境准备详见:annoconda
2.2 运行环境构建
git clone https://github.com/sczhou/CodeFormer
cd CodeFormerconda create -n codeformer python=3.9
conda activate codeformerpip install -r requirements.txt
python basicsr/setup.py develop
2.3 模型下载
python scripts/download_pretrained_models.py facelibpython scripts/download_pretrained_models.py CodeFormer
parsing_parsenet 下载模型存储到weights/facelib/目录下
codeformer_colorization下载模型存储到weights/CodeFormer/目录下
codeformer_inpainting下载模型存储到weights/CodeFormer/目录下
RealESRGAN_x2plus下载模型存储到weights/realesrgan/目录下
2.4 运行
2.4.1 人脸复原
python inference_codeformer.py -w 0.5 --has_aligned --input_path inputs/cropped_faces/0143.png
2.4.2 全图片增强
python inference_codeformer.py -w 0.7 --input_path inputs/whole_imgs/03.jpg
2.4.3 人脸颜色增强
python inference_colorization.py --input_path inputs/cropped_faces/0368.png
2.4.4 人脸补全
python inference_inpainting.py --input_path inputs/masked_faces/00105.png
2.4.5 视频增强
python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path inputs/test.mp4
3 安装问题定位与解决
3.1 安装错误描述
安装依赖过程中出现如下错误:
ERROR: HTTP error 404 while getting https://pypi.doubanio.com/packages/66/9a/b6d21ad7d69ce6f78d57bf4cb6382c2121811deeb128c57da22b042fe147/tb_nightly-2.15.0a20230902-py3-none-any.whl#sha256=11ed86269422f5fe48208c732956ac5633b9b76eed5bfed587a0621ce39275b1 (from https://pypi.doubanio.com/simple/tb-nightly/) (requires-python:>=3.9)
ERROR: Could not install requirement tb-nightly from https://pypi.doubanio.com/packages/66/9a/b6d21ad7d69ce6f78d57bf4cb6382c2121811deeb128c57da22b042fe147/tb_nightly-2.15.0a20230902-py3-none-any.whl#sha256=11ed86269422f5fe48208c732956ac5633b9b76eed5bfed587a0621ce39275b1 (from -r requirements.txt (line 11)) because of HTTP error 404 Client Error: Not Found for url: https://mirrors.cloud.tencent.com/pypi/packages/66/9a/b6d21ad7d69ce6f78d57bf4cb6382c2121811deeb128c57da22b042fe147/tb_nightly-2.15.0a20230902-py3-none-any.whl for URL https://pypi.doubanio.com/packages/66/9a/b6d21ad7d69ce6f78d57bf4cb6382c2121811deeb128c57da22b042fe147/tb_nightly-2.15.0a20230902-py3-none-any.whl#sha256=11ed86269422f5fe48208c732956ac5633b9b76eed5bfed587a0621ce39275b1 (from https://pypi.doubanio.com/simple/tb-nightly/) (requires-python:>=3.9)
3.2 问题分析
从错误信息可知,doubanio源中没有tb-nightly这个包
3.3 问题解决
指定aliyun镜像安装tb_nightly
pip install tb_nightly==2.15.0a20230902 -i https://mirrors.aliyun.com/pypi/simple
相关文章:
最强的AI视频去码图片修复模型:CodeFormer
目录 1 CodeFormer介绍 1.1 CodeFormer解决的问题 1.2 人脸复原的挑战 1.3 方法动机 1.4 模型实现 1.5 实验结果 2 CodeFormer部署与运行 2.1 conda环境安装 2.2 运行环境构建 2.3 模型下载 2.4 运行 2.4.1 人脸复原 编辑编辑 2.4.2 全图片增强 2.4.3 人脸颜色…...
jenkins自动化部署安装
一、准备工作 1、安装jdk # 1、下载准备jdk包(也可以用docker安装) wget ... # 2、直接解压到,无需安装 unzip ...2、安装maven # 1、下载准备maven压缩包 wget ... # 2、直接解压,无需安装 unzip ... # 3、修改setting.xml,修改localRepository和MIRROR镜像地址…...
如何调用Zabbix API获取主机信息
自Zabbix 1.8版本被引进以后,Zabbix API开始扮演着越来越重要的角色,它可以为批量操作、第三方软件集成以及其他应用提供可编程接口。 在运维实践中,Zabbix API还有更多巧妙的应用。 面对规模庞大的监控设备,可能会出现某台机器发…...
批量执行redis命令总结
目录 批量执行redis命令方式1: redis-cli直接执行方式2:通过redis-cli和xargs等命令 批量执行redis命令 方式1: redis-cli直接执行 redis-cli command param redis-cli本身支持单个命令执行省略了连接参数操作的key等相关数据,可以通过线下获取或通过keys scan等命…...
命令行git联网失败,但是实际可以联网
最近下载代码的时候发现总是告诉我连不上github的网页,但是我自己通过浏览器又可以上网,找了半天发现这个方法可以。 记录下这个代理 打开git bash 执行以下命令: git config --global http.proxy http://127.0.0.1:7890 git config --glob…...
网络编程套接字,Linux下实现echo服务器和客户端
目录 1、一些网络中的名词 1.1 IP地址 1.2 端口号port 1.3 "端口号" 和 "进程ID" 1.4 初始TCP协议 1.5 UDP协议 2、socket编程接口 2.1 socket 常见API 2.2 sockaddr结构 3、简单的网络程序 3.1 udp实现echo服务器和客户端 3.1.1 echo服务器实…...
java+ssh+mysql智能化办公管理系统
项目介绍: 本系统为基于jspsshmysql的OA智能办公管理系统,包含管理员、领导、员工角色,功能如下: 管理员:公告信息;工作计划;公司资料;部门管理;员工管理;员…...
网络层抓包tcpdump
sudo tcpdump -i eth0 -s 0 -nn host iphost -w xxx.pcap 这段代码使用了命令行工具 tcpdump,用于在Linux系统上捕获网络数据包。让我详细介绍一下这段代码的含义和 tcpdump 的用法: 代码含义: sudo: 使用超级用户权限执行 tcpdump 命令&am…...
QT之形态学操作
形态学操作包含以下操作: 腐蚀 (Erosion)膨胀 (Dilation)开运算 (Opening)闭运算 (Closing)形态梯度 (Morphological Gradient)顶帽 (Top Hat)黑帽(Black Hat) 其中腐蚀和膨胀操作是最基本的操作,其他操作由这两个操作变换而来。 腐蚀 用一个结构元素…...
15、监测数据采集物联网应用开发步骤(11)
源码将于最后一遍文章给出下载 监测数据采集物联网应用开发步骤(10) 程序自动更新开发 前面章节写了部分功能模块开发: 日志或文本文件读写开发;Sqlite3数据库读写操作开发;定时器插件化开发;串口(COM)通讯开发;TCP/IP Client开发;TCP/IP Server 开发;modbus协议…...
Pygame中Trivia游戏解析6-2
3.1.2 读取保存题目的文件 在Trivia类的__init__()方法中,对各变量初始化完成之后,读取保存题目的文件,代码如下所示。 f open(filename, "r", encodingutf8) trivia_data f.readlines() f.close() 其中,open()函数…...
java 实现命令行模式
命令模式是一种行为设计模式,它允许您将请求封装为对象,以便您可以将其参数化、队列化、记录和撤销。在 Java 中实现命令模式涉及创建一个命令接口,具体命令类,以及一个接收者类,该接收者类执行实际操作。下面是一个简…...
A - Orac and Models(最长上升子序列——加强版)
There are nn models in the shop numbered from 11 to nn, with sizes s_1, s_2, \ldots, s_ns1,s2,…,sn. Orac will buy some of the models and will arrange them in the order of increasing numbers (i.e. indices, but not sizes). Orac thinks that the obtai…...
【python手写算法】逻辑回归实现分类(含公式推导)
公式推导: 代码实现: # codingutf-8 import matplotlib.pyplot as plt import numpy as npdef f(w1,x1,w2,x2,b):zw1*x1w2*x2breturn 1/(1np.exp(-z)) if __name__ __main__:X1 [12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,2.1…...
【2023高教社杯数学建模国赛】ABCD题 问题分析、模型建立、参考文献及实现代码
【2023高教社杯数学建模国赛】ABCD题 问题分析、模型建立、参考文献及实现代码 1 比赛时间 北京时间:2023年9月7日 18:00-2023年9月10日20:00 2 思路内容 可以参考我提供的历史竞赛信息内容,最新更新我会发布在博客和知乎上,请关注我获得最…...
yum安装mysql5.7散记
## 数据源安装 $ yum -y install wget $ wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm $ yum localinstall mysql57-community-release-el7-8.noarch.rpm $ yum repolist enabled | grep "mysql.*-community.*" $ yum install mysql-…...
DNS解析
1.DNS介绍 DNS 表示域名系统。此系统实质上是用于整理和识别各个域名的网络电话簿。电话簿将“Acme Pizza”之类的名称转换为要拨打的正确电话号码,而 DNS 将“www.google.com”之类的网络地址转换为托管该网站的计算机的物理 IP 地址,如“74.125.19.147…...
从jdk8 升级到jdk17的问题总结
目录 1. java.lang.reflect.InaccessibleObjectException: 2. java.lang.UnsatisfiedLinkError in autosys 3. java.lang.NoClassDefFoundError: Could not initialize class net.sf.jasperreports.engine.util.JRStyledTextParser 4. java.lang.UnsatisfiedLinkError: **…...
一百七十二、Flume——Flume采集Kafka数据写入HDFS中(亲测有效、附截图)
一、目的 作为日志采集工具Flume,它在项目中最常见的就是采集Kafka中的数据然后写入HDFS或者HBase中,这里就是用flume采集Kafka的数据导入HDFS中 二、各工具版本 (一)Kafka kafka_2.13-3.0.0.tgz (二)…...
pnpm 升级
1. 在以下路径下删除pnpm包 2. 执行which pnpm,在结果目录中删除pnpm 3. sudo npm install -g pnpm 重新安装,node默认使用16...
有关使用HttpServletRequest的Cookie的设置和获取
文章目录 小结问题和解决参考 小结 介绍了如何在HttpServletRequest中对Cookie的进行设置和获取。 问题和解决 在服务器端的HttpServletRequest中对Cookie的进行设置后,客户端在接下来的请求中会携带此设置好的Cookie,所以可以在服务器端接收请求时提…...
关于 Nginx 的哪些事
关于 Nginx 的哪些事 1、Nginx 主要功能2、Nginx 的常用命令2.1、启动Nginx2.2、停止 Nginx2.3、重新加载Nginx 配置2.4、检查Nginx配置文件2.5、指定配置文件2.6、检查Nginx版本2.7、显示Nginx帮助信息 3、Nginx 配置文件 nginx.conf3.1、Nginx 配置文件(nginx.con…...
插入排序——希尔排序
1、简述: 希尔排序(Shells Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 D.L.Shell 于 1959 年提出而得名。 希尔排…...
C语言之初阶总结篇
目录 NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 NO.10 NO.11 NO.12.概念tips NO.13.求最小公倍数 NO.14.最大公因数 NO.15.输入读取字符串 NO.16.倒置字符串 今天是一些C语言题目,最近天气炎热,多喝水。 NO.1 下面程序执行后&am…...
Android签名查看
查看签名文件信息 第一种方法: 1.打开cmd,执行keytool -list -v -keystore xxx.keystore,效果如下图: 第二种方法: 1.打开cmd,执行 keytool -list -v -keystore xxxx.keystore -storepass 签名文件密码࿰…...
Educational Codeforces Round 3
目录 A. USB Flash Drives B. The Best Gift C. Load Balancing D. Gadgets for dollars and pounds A. USB Flash Drives #include<bits/stdc.h>using namespace std; const int N1e65; typedef long long ll; typedef pair<ll,ll> pll; typedef array<int…...
Docker Compose常用命令
常用命令 1.1 restart, start, stop-- 启动和停止服务 命令必须在 docker-compose.yml文件所在的目录下执行。 # 前台启动, 启动项目中的所有服务。 $. docker-compose up# 后台启动, 启动所有服务并在后台运行。 $. docker-compose up -d# 停止所有服务。 $. docker-compose …...
C++——智能指针
智能指针 文章目录 智能指针内存泄漏智能指针解决内存泄漏问题智能指针的使用及原理RAII智能指针对象的拷贝问题 C中的智能指针auto_ptrunique_ptrshared_ptrweak_ptr定制包装器C11和boost中智能指针的关系 内存泄漏 什么是内存泄漏:内存泄漏指因为疏忽或错误造成程…...
CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现
文章目录 CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现0x01 前言0x02 漏洞描述0x03 影响范围0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 CVE-2023-3836:大华智慧园区综合管理平台任意文件上传漏洞复现 0x01 前言 免责声…...
LAMP搭建WordPress
L linux A apache hhtpd M mysql/maridb P PHP1、 安装php yum -y install php php-fpm php-server php-mysql1.1、 启动php-fpm并自启 systemctl enable php-fpm --now[rootecs-1cee ~]# systemctl status php-fpm ● php-fpm.service - The PHP FastCGI Process ManagerLoa…...
深圳网站制作哪家便宜/手机建站系统
本文实例讲述了python实现连接postgresql数据库的方法。分享给大家供大家参考,具体如下:python可以通过第三方模块连接postgresql. 比较有名的有psycopg2和python3-postgresql(一)psycopg2ubuntu下安装 sudo apt-get install python3-psycopg2创建一个te…...
杭州强龙网站建设电话/网站制作的流程是什么
2019独角兽企业重金招聘Python工程师标准>>> 在软件开发领域,高级开发工程师通常是指那些编写代码超过3年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs是一名高级开发工程师兼Scrum管理员。他认为࿰…...
做交友网站赚钱吗/公关公司的主要业务
论文作者:Alain Chabrier论文发表日期:2005摘要车辆路径问题的列生成模型通常包含一个基本的最短路径子问题。由于该问题已知算法的最坏情况复杂度过高,其基本路径约束通常被松弛。实际上,由于每个客户必须被访问一次,…...
网站建设费是什么意思/太原seo计费管理
使用Git时,文件的生命周期如下: 转载于:https://www.cnblogs.com/144823836yj/p/9141260.html...
网站关键词掉的很快/国外域名
迭代器模式介绍 顺序访问一个集合 顺序:如数组、类数组称为顺序,而非对象,能从0,1,2…通过index访问的值 使用者无需知道集合的内部结构 示例 如果要对这三个变量进行遍历,需要写三个遍历方法 <p>…...
jira confluence做网站/自动收录网
导读:电脑是一种高科技产品,它能够给工作、生活带来极大的方便,同时还具有娱乐功能。它操作一点都不费力,特别适合中老年人的生理特点。经常使用电脑可以健脑增智。电脑的操作需要手眼的配合,人的手指内有丰富的神经&a…...