当前位置: 首页 > news >正文

计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程

大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程。
要理解卷积神经网络中图像特征提取的全过程,我们可以将其比喻为人脑对视觉信息的处理过程。就像我们看到一个物体时,大脑会通过不同的神经元来处理不同特征的信息,如轮廓、色彩和纹理等。

一、图像特征提取介绍

在CNN中,输入图像会被逐层处理,每一层都会提取不同的特征信息。这些层可以被看作是不同的“过滤器”,它们会识别图像中特定的模式和形状,比如边缘、角落和线条等。随着层数的逐渐增加,CNN能够提取越来越复杂的特征,比如图像中的纹理、形状和结构等。

假设我们的输入图像是一张猫的图片。CNN的第一层可能会检测到猫身体的边缘和角落,第二层可能会提取出猫耳朵的形状和脸部的轮廓,第三层可能会进一步分析猫毛发的纹理,眼睛,形状。这种特征提取的过程可以被可视化,让我们更好地理解CNN是如何学习和处理图像信息的。通过可视化,我们可以看到CNN不同层次提取的图像特征,可以发现低层次的特征包括边缘和纹理等,而高层次的特征包括眼睛、鼻子和嘴巴等更加抽象和语义化的信息。

二、CNN提取特征的原理

卷积神经网络通过卷积和池化操作来提取图像中的特征。其原理如下:

输入图像 I I I 经过多个卷积层和池化层的处理,得到最后的特征图 F F F。在卷积层中,使用一组可学习的滤波器 W W W 对输入图像进行卷积运算,并加上偏置 b b b,即:

C = W ∗ I + b C = W * I + b C=WI+b

其中, ∗ * 表示卷积运算。这样,每个滤波器在输入图像上滑动,并通过计算卷积运算,得到一个对应的特征图。

在特征图中,通过激活函数(如ReLU)进行非线性激活,得到激活特征图:

A = ReLU ( C ) A = \text{{ReLU}}(C) A=ReLU(C)

然后,通过池化层对激活特征图进行下采样操作,以减少特征图的空间维度。常用的池化操作是最大池化,它在每个池化窗口中选择最大值作为输出特征。这样可以保留最显著的特征,同时减少计算量。

经过多次卷积和池化操作,得到了一系列不同尺寸的特征图。这些特征图包含了输入图像的不同级别的特征,从低级的边缘和纹理到高级的语义信息。

这些特征图可以被传递到全连接层进行分类、检测或其他任务。全连接层将特征图展平成向量,并与权重矩阵相乘,再加上偏置,最后通过softmax函数等激活函数得到最终的输出结果。

CNN网络通过卷积和池化操作,自动学习图像中的特征,使得我们能够更好地理解和分析图像数据,并应用于各种计算机视觉任务。

三、CNN提取特征可视化过程

现在我将通过代码实现这个图像特征提取的过程:

import matplotlib.pyplot as plt
import torch
from PIL import Image
import numpy as np
import sys
sys.path.append("..")
from torchvision import transforms# 对于给定的一个网络层的输出x,x为numpy格式的array,维度为[0, channels, width, height]def draw_features(width, height, channels,x,savename):fig = plt.figure(figsize=(32,32))fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05)for i in range(channels):plt.subplot(height,width, i + 1)plt.axis('off')img = x[0, i, :, :]pmin = np.min(img)pmax = np.max(img)img = (img - pmin) / (pmax - pmin + 0.000001)plt.imshow(img, cmap='gray')
#         print("{}/{}".format(i, channels))fig.savefig(savename, dpi=300)fig.clf()plt.close()# 读取模型
def load_checkpoint(filepath):checkpoint = torch.load(filepath)model = checkpoint['model']  # 提取网络结构model.load_state_dict(checkpoint['net_state_dict'])  # 加载网络权重参数for parameter in model.parameters():parameter.requires_grad = Falsemodel.eval()return modelsavepath = './'
def predict(model):# 读入模型model = load_checkpoint(model)print(model)##将模型放置在gpu上运行if torch.cuda.is_available():model.cuda()img = Image.open(img_path).convert('RGB')INPUT_SIZE =(224,224)  # 根据需要调整图像的大小# 创建图像转换函数transform = transforms.Compose([transforms.Resize(INPUT_SIZE),transforms.ToTensor(),])# 对图像进行转换img = transform(img).unsqueeze(0)if torch.cuda.is_available():img = img.cuda()# 查看每一层处理的图片信息with torch.no_grad():x = model.conv1(img)x = model.bn1(x)draw_features(5,5,15, x.cpu().numpy(), "{}/f1_conv1.png".format(savepath))x = model.relu(x)draw_features(5,5,15, x.cpu().numpy(), "{}/f1_conv2.png".format(savepath))x = model.layer1(x)draw_features(5,5,15,  x.cpu().numpy(), "{}/f1_conv3.png".format(savepath))x = model.layer2(x)draw_features(5,5,15, x.cpu().numpy(), "{}/f1_conv4.png".format(savepath))x = model.layer3(x)draw_features(5,5,15, x.cpu().numpy(), "{}/f1_conv5.png".format(savepath))if __name__ == "__main__":trained_model = 'resnet_model.pkl'img_path = 'cat.png'predict(trained_model)

构建模型ResNet模型:在可视化主函数的同级下创建目录:models->ClassNetwork->ResNet.py

import math
import torch
import torch.nn as nndef conv3x3(in_planes, out_planes, stride=1):"3x3 convolution with padding"return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,padding=1, bias=False)class BasicBlock(nn.Module):expansion = 1def __init__(self, inplanes, planes, stride=1, downsample=None):super(BasicBlock, self).__init__()self.conv1 = conv3x3(inplanes, planes, stride)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = conv3x3(planes, planes)self.bn2 = nn.BatchNorm2d(planes)self.relu = nn.ReLU(inplace=True)self.downsample = downsampleself.stride = stridedef forward(self, x):residual = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:residual = self.downsample(x)out += residualout = self.relu(out)return outclass Bottleneck(nn.Module):expansion = 4def __init__(self, inplanes, planes, stride=1, downsample=None):super(Bottleneck, self).__init__()self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(planes)self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(planes)self.conv3 = nn.Conv2d(planes, planes * Bottleneck.expansion, kernel_size=1, bias=False)self.bn3 = nn.BatchNorm2d(planes * Bottleneck.expansion)self.relu = nn.ReLU(inplace=True)self.downsample = downsampleself.stride = stridedef forward(self, x):residual = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)if self.downsample is not None:residual = self.downsample(x)#attention blockout += residualout = self.relu(out)return outclass ResNet(nn.Module):def __init__(self, dataset='cifar10', depth=18, num_classes=10, bottleneck=False):super(ResNet, self).__init__()self.dataset = datasetif self.dataset.startswith('cifar'):self.inplanes = 16# print(bottleneck)if bottleneck == True:n = int((depth - 2) / 9)block = Bottleneckelse:n = int((depth - 2) / 6)block = BasicBlockself.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(self.inplanes)self.relu = nn.ReLU(inplace=True)self.layer1 = self._make_layer(block, 16, n)self.layer2 = self._make_layer(block, 32, n, stride=2)self.layer3 = self._make_layer(block, 64, n, stride=2)self.avgpool = nn.AvgPool2d(8)self.fc = nn.Linear(64 * block.expansion, num_classes)elif dataset == 'imagenet':blocks = {18: BasicBlock, 34: BasicBlock, 50: Bottleneck, 101: Bottleneck, 152: Bottleneck, 200: Bottleneck}layers = {18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3],200: [3, 24, 36, 3]}assert layers[depth], 'invalid detph for ResNet (depth should be one of 18, 34, 50, 101, 152, and 200)'self.inplanes = 64self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(blocks[depth], 64, layers[depth][0])self.layer2 = self._make_layer(blocks[depth], 128, layers[depth][1], stride=2)self.layer3 = self._make_layer(blocks[depth], 256, layers[depth][2], stride=2)self.layer4 = self._make_layer(blocks[depth], 512, layers[depth][3], stride=2)self.avgpool = nn.AvgPool2d(7)self.fc = nn.Linear(512 * blocks[depth].expansion, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):n = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsm.weight.data.normal_(0, math.sqrt(2. / n))elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()def _make_layer(self, block, planes, blocks, stride=1):downsample = Noneif stride != 1 or self.inplanes != planes * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(planes * block.expansion),)layers = []layers.append(block(self.inplanes, planes, stride, downsample))self.inplanes = planes * block.expansionfor i in range(1, blocks):layers.append(block(self.inplanes, planes))return nn.Sequential(*layers)def forward(self, x):if self.dataset == 'cifar10' or self.dataset == 'cifar100':x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.avgpool(x)x = x.view(x.size(0), -1)x = self.fc(x)elif self.dataset == 'imagenet':x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = x.view(x.size(0), -1)x = self.fc(x)return x

四、征可视化过程运行

这里我们输入一张猫咪的图像:
在这里插入图片描述

程序运行我们看到ResNet的网络结构如下:

ResNet((conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(layer1): Sequential((0): BasicBlock((conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(1): BasicBlock((conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer2): Sequential((0): BasicBlock((conv1): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(16, 32, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer3): Sequential((0): BasicBlock((conv1): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(avgpool): AvgPool2d(kernel_size=8, stride=8, padding=0)(fc): Linear(in_features=64, out_features=100, bias=True)
)

然后会生成每一层图像处理的过程:
conv1第一层处理:
在这里插入图片描述

relu层处理:
在这里插入图片描述

layer1层处理:
在这里插入图片描述

layer2层处理:
在这里插入图片描述

layer3层处理:
在这里插入图片描述

五、总结

CNN中的图像特征提取是通过模拟人类视觉系统的工作原理,逐层提取输入数据(比如图像)的不同层次的特征表示,从而实现对输入数据的深度学习和分析。通过卷积层、池化层和全连接层等组成的多层结构,CNN能够自动学习出输入数据中的抽象特征,从低级特征(如边缘、纹理)到更高级的语义概念(如物体形状、颜色、纹理等)。这种层次化的特征表达方式,使得CNN在图像分类、目标检测、人脸识别、图像生成等多种计算机视觉任务中都具有优异的性能表现。与传统的手工特征提取方法相比,CNN不需要人工设计特征,能够自动学习出最优的特征表示,因此大大减少了人工干预的成本,并且具有更好的泛化能力和鲁棒性。

相关文章:

计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程

大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程。 要理解卷积神经网络中图像特征提取的全过程,我们可以将其比喻为人脑对视觉信息的处理过程。就像…...

el-table中点击跳转到详情页的两种方法

跳转的两种写法: 1.使用keep-alive使组件缓存,防止刷新时参数丢失 keep-alive 组件用于缓存和保持组件的状态,而不是路由参数。它可以在组件切换时保留组件的状态,从而避免重新渲染和加载数据。 keep-alive 主要用于提高页面性能和用户体验,而…...

RT-DETR个人整理向理解

一、前言 在开始介绍RT-DETR这个网络之前,我们首先需要先了解DETR这个系列的网络与我们常提及的anchor-base以及anchor-free存在着何种差异。 首先我们先简单讨论一下anchor-base以及anchor-free两者的差异与共性: 1、两者差异:顾名思义&…...

易点易动库存管理系统与ERP系统打通,帮助企业实现低值易耗品管理

现今,企业管理日趋复杂,无论是核心经营还是辅助环节,都需要依靠信息化手段来提升效率。而低值易耗品作为企业日常运营中的必需品,其管理也面临诸多挑战。传统做法效率低下,容易出错。如何通过信息化手段实现低值易耗品的高效管理,成为许多企业必顾及的一个课题。 易点易动作为…...

【笔试强训选择题】Day34.习题(错题)解析

作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:笔试强训选择题 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!!&#xff…...

“现代”“修饰”卷积神经网络,何谓现代

一、“现代” vs “传统” 现代卷积神经网络(CNNs)与传统卷积神经网络之间存在一些关键区别。这些区别主要涉及网络的深度、结构、训练技巧和应用领域等方面。以下是现代CNNs与传统CNNs之间的一些区别: 深度: 传统CNNs&#xff1…...

XHTML基础知识了解

XHTML是一种严格符合XML规范的标记语言,它的基本语法和HTML类似,但是更加严谨和规范。XHTML的代码结构非常清晰,方便浏览器和搜索引擎解析。下面是一些XHTML的基础知识和代码示例: 声明文档类型(DTD) 在X…...

USB Server集中管控加密狗,浙江省电力设计院正在用

近日,软件加密狗的分散管理和易丢失性,给拥有大量加密狗的浙江省电力设计院带来了一系列的问题。好在浙江省电力设计院带及时使用了朝天椒USB Server方案,实现了加密狗的集中安全管控,避免了加密狗因为管理不善和遗失可能带来的巨…...

rust换源

在$HOME/.cargo/目录下建一个config文件。windows默认是C:\Users\user_name\.cargo。 config文件输入: [source.crates-io] registry "https://github.com/rust-lang/crates.io-index" # 使用 replace-with指明默认源更换为ustc源 replace-with ustc#…...

常见关系型数据库SQL增删改查语句

常见关系型数据库SQL增删改查语句: 创建表(Create Table): CREATE TABLE employees (id INT PRIMARY KEY,name VARCHAR(50),age INT,department VARCHAR(50) ); 插入数据(Insert Into): INSERT …...

OpenCV(二十七):图像距离变换

1.像素间距离 2.距离变换函数distanceTransform() void cv::distanceTransform ( InputArray src, OutputArray dst, int distanceType, int maskSize, int dstType CV_32F ) src:输入图像,数据类型为CV8U的单通道图像dst:输出图像,与输入图像…...

服务器就是一台电脑吗?服务器的功能和作用

服务器不仅仅是一台普通的电脑,它在功能和作用上有着显著的区别。下面是关于服务器的功能和作用的简要说明: 存储和共享数据:服务器可以用作数据存储和共享的中心。它们通常配备大容量的硬盘或固态硬盘,用于存储文件、数据库和其他…...

vue3实现塔罗牌翻牌

vue3实现塔罗牌翻牌 前言一、操作步骤1.布局2.操作3.样式 总结 前言 最近重刷诡秘之主,感觉里面的塔罗牌挺有意思,于是做了一个简单的塔罗牌翻牌动画(vue3vitets) 一、操作步骤 1.布局 首先我们定义一个整体的塔罗牌盒子&…...

分布式搜索引擎

1 DSL查询文档 elasticsearch的查询依然是基于JSON风格的DSL来实现的。 1.1.DSL查询分类 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出所有数据,一…...

【2023最新版】腾讯云CODING平台使用教程(Pycharm/命令:本地项目推送到CODING)

目录 一、CODING简介 网址 二、CODING使用 1. 创建项目 2. 创建代码仓库 三、PyCharm:本地项目推送到CODING 1. 管理远程 2. 提交 3. 推送 4. 结果 四、使用命令推送 1. 打开终端 2. 初始化 Git 仓库 3. 添加远程仓库 4. 添加文件到暂存区 5. 提交更…...

IDEA Properties 文件亂碼怎麼解決

1.FIle->Setting->Editor->File Encodings 修改Properties FIles 編碼顯示格式:UTF-8...

uniapp微信小程序用户隐私保护

使用wx.requirePrivacyAuthorize实现微信小程序用户隐私保护。 一、前言 微信小程序官方出了一个公告《关于小程序隐私保护指引设置的公告》。不处理的话,会导致很多授权无法使用,比如头像昵称、获取手机号、位置、访问相册、上传图片视频、访问剪切板…...

虚幻引擎4中关于设置关于体坐标系下的物体速度的相关问题

虚幻引擎4中关于设置关于体坐标系下的物体速度的相关问题 文章目录 虚幻引擎4中关于设置关于体坐标系下的物体速度的相关问题前言全局坐标系转体坐标系速度设置X轴方向的体坐标系速度设置Y轴方向的体坐标系速度XY轴体坐标系速度整合 Z轴速度的进一步设置解决办法 小结 前言 利…...

16 | Spark SQL 的 UDF(用户自定义函数)

UDF(用户自定义函数):Spark SQL 允许用户定义自定义函数,以便在 SQL 查询或 DataFrame 操作中使用。这些 UDF 可以扩展 Spark SQL 的功能,使用户能够执行更复杂的数据操作。 示例: // 注册UDF spark.udf.register("calculateDiscount", (price: Double, disc…...

蓝桥杯官网填空题(土地测量)

题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 造成高房价的原因有许多,比如土地出让价格。既然地价高,土地的面积必须仔细计算。遗憾的是,有些地块的形状不规则,比…...

【Java项目实战】牛客网论坛项目1 - Spring入门与初识SpringMVC

目录 Spring 入门SpringInitializrApplicationContextAwareControllerDAODAO 名称索引ServiceConfig自动装配 初识 SpringMVCHttp 请求GETPOSTHTML 渲染响应 JSON 数据 Spring 入门 SpringInitializr IDEA 专业版自带的功能,也可以直接搜索对应网站,通…...

Gurobi使用(一)——操作指南(转自知乎)

好像还是要学一下Gurobi如何使用的,不然这代码着实有点抽象了 一、入门操作 一般来说,求解一个数学规划模型的时候,通常会按照如下步骤解决问题: 设置变量---addVar()。 更新变量空间---update()。 设定目标函数---setObjective()。 设定约…...

计算机网络的故事——简单的HTTP协议

简单的HTTP协议 文章目录 简单的HTTP协议一、简单的HTTP协议 一、简单的HTTP协议 HTTP是不保存状态的协议,为了实现保存状态功能于是引入了Cookie技术。 method: get:获取资源 post:传输实体主体 put:传输文件 head:获取报文首部,用于确认URI的有效性以…...

新能源商用车软件开发设计规范

目 录 前 言.............................................................................................................. 1 1 范围............................................................................................................... 2 2 规范性…...

Json“牵手”当当网商品详情数据方法,当当商品详情API接口,当当API申请指南

当当网是知名的综合性网上购物商城,由国内著名出版机构科文公司、美国老虎基金、美国IDG集团、卢森堡剑桥集团、亚洲创业投资基金(原名软银中国创业基金)共同投资成立1。 当当网从1999年11月正式开通,已从早期的网上卖书拓展到网…...

lazarus开发界面程序用线程显示进度条

lazarus开发界面程序用线程显示进度条,效果更好,以前没有另外显示线程,遇到上传文件或其他较长时间操作,界面就卡在那里,体验不好,现在另外启动线程操作,主界面就不至于卡在那里。 首先在主界面…...

解决VSCode下载速度特别慢的问题

一、下载VSCode 1.打开VSCode官网 https://code.visualstudio.com 2.download下载 3.下载特别慢 二、解决VSCode下载速度特别慢 1.单击右下角全部显示 我是用chrome浏览器,点击右下角的全部显示按钮,可以跳转到下载内容页面。 如果你是用其他浏览器…...

国家矿山安全监察局关于露天矿山边坡监测系统建设及预警响应要求

矿山是人类社会发展的物资基础,也是国民经济的重要组成部分。随着我国经济的快速增长,矿山开发步伐加快,使得边坡问题日益严重,影响了矿山的安全生产。为有效防范遏制矿山重特大事故发生,国家矿山安全监察局在8月30日发…...

前端使用elementui开发后台管理系统的常用功能(持续更新)

前言:本次的文章完全是自己开发中遇到的一些问题,经过不断的修改终于完成的一些功能,当个快捷的查看手册吧~ elementui开发后台管理系统常用功能 高级筛选的封装elementui的表格elementui的表格实现跨页多选回显elementui的表单elementui的日…...

中东 Shopify 如何使用 Bytebase 构建一站式数据库开发工作流

公司简介 Salla 是一家 2016 年成立,位于沙特麦加的自建站电商平台。 作为中东 Shopify,其最大的特点是支持阿拉伯语建站,并且提供更多适应中东地区特点的本地化服务。截止目前,已有 47,000 家店铺入驻 Salla,商品销售…...

百浪科技做网站怎么样/互联网十大企业

摘要:信息技术高度发达的今天,新闻业已经在互联网行业中占越发主导地位。而我们的生活也跟新闻息息相关,尤其是在高度发达的精神文化社会,人们对于电影的喜爱也越来越热衷,但想挑到自己喜爱的片子,就需要影评网站来筛选…...

柬埔寨做av网站/cps推广接单平台

Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库。bs4 模块的 BeautifulSoup 配合requests库可以写简单的爬虫。安装命令:pip install beautifulsoup4解析器主要的解析器,以及它们的优缺点如下:安装命令:pip install lxmlpip …...

网站开发流程书籍/电商seo是什么

这是第五周。本周积极锻炼加上跑步,感觉很不错,肌肉变大了。学习开始有兴趣了,对java,找到了一个毕向东的视频,看的很来劲,加油,下周要学的更多,锻炼也不能停。转载于:https://www.c…...

web网站开发求职信/深圳百度seo培训

我们redis的安装较为复杂,属于Linux上的源码编译安装,即不能直接通过yum安装。 1、安装Redis 具体步骤: 1、进入redis官网,复制下载链接,通过wget下载源码 官网:https://redis.io/ 下载完成后,查…...

出国看病网站开发/广告代理公司

刚才顺便又把二分默写了一遍,还好,这次比较顺利。算法这一块,一直是自己一块痛处,有时感觉自己的脑瓜子怎么就这么笨,后一想觉得肯定是锈逗了,确实啊,这么长时间不思考的脑子能机灵到哪呢&#…...

wordpress 手机验证码插件/深圳全网信息流推广公司

折线分割平面 Time Limit: 1000ms Memory limit: 32768K 有疑问?点这里^_^ 题目描述 我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部…...