什么东西可以做网站/我们公司在做网站推广
赛题介绍
在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此, 商超通常会根据各商品的历史销售和需 求情况每天进行补货。
由于商超销售的蔬菜品种众多、产地不尽相同,而蔬菜的进货交易时间通常在凌晨 3:00- 4:00,为此商家须在不确切知道具体单品和进货价格的情况下, 做出当日各蔬菜品类的补货 决策。蔬菜的定价一般采用“成本加成定价”方法, 商超对运损和品相变差的商品通常进行 打折销售。可靠的市场需求分析,对补货决策和定价决策尤为重要。从需求侧来看,蔬菜类 商品的销售量与时间往往存在一定的关联关系;从供给侧来看,蔬菜的供应品种在 4 月至 10 月较为丰富,商超销售空间的限制使得合理的销售组合变得极为重要。
附件 1 给出了某商超经销的 6 个蔬菜品类的商品信息;附件 2 和附件 3 分别给出了该 商超 2020 年 7 月 1 日至 2023 年 6 月 30 日各商品的销售流水明细与批发价格的相关数据; 附件 4 给出了各商品近期的损耗率数据。请根据附件和实际情况建立数学模型解决以下问 题:
问题 1 蔬菜类商品不同品类或不同单品之间可能存在一定的关联关系,请分析蔬菜各 品类及单品销售量的分布规律及相互关系。
问题 2 考虑商超以品类为单位做补货计划,请分析各蔬菜品类的销售总量与成本加成 定价的关系,并给出各蔬菜品类未来一周(2023 年 7 月 1-7 日)的日补货总量和定价策略, 使得商超收益最大。
问题 3 因蔬菜类商品的销售空间有限,商超希望进一步制定单品的补货计划, 要求可 售单品总数控制在 27-33 个,且各单品订购量满足最小陈列量 2.5 千克的要求。根据 2023 年 6 月 24-30 日的可售品种,给出 7 月 1 日的单品补货量和定价策略,在尽量满足市场对各 品类蔬菜商品需求的前提下,使得商超收益最大。
问题 4 为了更好地制定蔬菜商品的补货和定价决策,商超还需要采集哪些相关数据, 这些数据对解决上述问题有何帮助, 请给出你们的意见和理由。
附件 1 6 个蔬菜品类的商品信息
附件 2 销售流水明细数据
附件 3 蔬菜类商品的批发价格
附件 4 蔬菜类商品的近期损耗率
注 (1) 附件 1 中, 部分单品名称包含的数字编号表示不同的供应来源。
(2) 附件4 中的损耗率反映了近期商品的损耗情况,通过近期盘点周期的数据计算得到。
全部思路一共30至40页
代码下载地址:
【多思路附源码】2023高教社杯 国赛数学建模C题思路 - 蔬菜类商品的自动定价与补货决策
数学建模论文万能模板(适用于大学生各类建模类竞赛论文参考)
需要可以点击 文末的卡片或者私信博主
论文模板
格式排版已经完善,曾有小伙伴用此模板加上自己的建模功底,获得省部级一等奖数学建模!
模板包含数学建模相关论文必要的流程和解题步骤,并且Word内有批注,对每一个板块应该如何书写,如何注意论文的一些格式,以及参考案例等!
以及按照标准论文排版OK了,建议写作的时候直接按照这个模板进行内容的填充,并且将相关术语进行整合!
例如:
简单的描述一下问题求解的大体思路,首段简明扼要,言简意赅。例如本文基于如何的问题背景,进行如何的建模,有怎样的经济实用效果,得出如何的策略等。主要是简短背景加实际效应的结合
针对问题一,此处描述对于问题一要求解进行大致的思路,利用了什么样的方法,有什么样的思路想法,最终通过怎么样的模型算法进行问题的建模,所得出的直接效果,例如一些模型的准确度和参数,可以加入说明。最终通过该求解方法,能够达到如何的效果,把问题求解实际化。这里该给出的加粗,需要加粗。
针对问题二,同样的效果描述和步骤,这里唯一需要注意的就是,如果问题是层层递进,就需要说明基于问题一所求解的结果,应用到问题二当中。
针对问题三,具体的过程如上,这里不光是对本问题的描述,可以适当…
思路分析
蔬菜商品补货与定价策略分析
在现代的商业环境中,正确地制定商品的补货和定价策略对于商家的成功至关重要。在本次分析中,我们集中关注了商超蔬菜商品的补货和定价策略,通过数据驱动的方法对其进行了深入的探讨。
- 蔬菜商品销售关联性分析
首先,为了更好地了解不同蔬菜之间的销售关联性,我们采用了Apriori关联分析算法。这是一种常用于购物篮分析的算法,旨在找出经常一起出现的商品组合。我们发现了多种蔬菜的组合在销售中经常一起出现,这为商家提供了有关商品组合促销的线索。
除了关联分析,我们还进行了销售量的时间序列分析,热力图分析和销售量的分布分析,来更全面地了解蔬菜商品的销售规律。
-
数据预处理:
- 检查并处理可能存在的缺失值。
- 将销售数据按日期和商品进行汇总,以得到每天每种蔬菜的销售量。
-
销售量分析:
- 使用可视化方法展示不同蔬菜品类及单品的销售量分布。
- 检查哪些蔬菜品类或单品的销售量最高和最低。
-
关联规则挖掘:
- 使用Apriori算法对购买行为进行分析,找出频繁购买的商品组合。
- 根据得到的关联规则,分析不同蔬菜品类或单品之间的关联关系。
-
结果可视化和分析:
其他数据分析,增加创新点
热力图:展示不同蔬菜品类间的销售相关性。
饼状图:展示各蔬菜品类的销售量占比。
柱状图:对比各蔬菜品类的总销售量。
折线图:展示某一特定蔬菜品类或单品随时间的销售趋势。
- 为每一步的结果提供相应的图表和文字描述。
这是一个数据分析的切入点,你可以从多维度的探索新的发现数据的价值和规律,并结合后面的题目对改题目的数据分析做一个限制,有利于循序渐进
具体实现代码可以参考文档
- 基于销售历史数据的补货与定价策略
考虑到商超以品类为单位制定补货计划,我们使用了线性回归模型来探索价格和销售量之间的关系。通过多元线性回归分析,我们发现销售量与价格之间存在明显的负相关关系,即价格上涨,销售量下降。
此外,我们还考虑了成本加成定价法模型,其中价格是由单位成本和成本利润率决定的。利用最优化算法,我们确定了使得商超收益最大化的成本利润率。
还可以使用时间序列的算法对其销量进行季节性的预测,这里的预测算法也有一定的讲究,具体可以参考我的思路里面的描述,对每一个方法都做了详细的描述。
-
步骤1:数据准备
- 计算每个蔬菜品类的总销售量。
- 计算每个蔬菜品类的平均批发价格。
-
步骤2:多元线性拟合
- 作为第一种方法,使用多元线性回归模型拟合销售总量与批发价格和损耗率的关系。
-
步骤3:其他方法
- 作为第二种方法,我们可以使用决策树或随机森林模型来预测未来一周的销售量。
-
步骤4:定价策略
- 基于预测的销售量和批发价格,为未来一周提供定价策略。
-
时间序列分析:
- 除了线性拟合,我们还可以使用时间序列分析来预测未来的销售量。
- 这种方法考虑了销售数据的时间顺序,可能更准确地预测未来的销售。
模型的选择与取舍
-
模型复杂性:
- 多元线性回归:较为简单,易于理解和解释。它假定因变量和自变量之间存在线性关系。
- ARIMA时间序列分析:相对复杂,专门用于时间序列数据。它可以捕捉数据中的季节性、趋势和周期性。
-
数据需求:
- 多元线性回归:需要足够多的观测值来确保模型的稳定性。对异常值和多重共线性较为敏感。
- ARIMA时间序列分析:需要连续的时间序列数据,并且数据量要足够多以捕捉潜在的趋势和季节性。
-
预测准确性:
- 多元线性回归:如果真实的关系非线性,或者模型未能包括所有重要的自变量,预测可能会偏离真实值。
- ARIMA时间序列分析:如果模型参数选择得当,且数据具有明显的趋势和季节性,ARIMA通常可以提供较为准确的预测。
-
应用范围:
- 多元线性回归:适用于各种类型的数据,只要因变量和自变量之间存在线性关系。
- ARIMA时间序列分析:专门用于时间序列数据。
对于这个具体的问题:
如果我们主要关心因变量(销售量)与自变量(如批发价格)之间的关系,并希望得到一个简单、直观的模型,那么多元线性回归可能是一个好选择。
如果我们主要关心未来的销售预测,并且数据具有明显的季节性和趋势,那么ARIMA可能更为合适。
具体实现代码可以参考文档
- 单品补货与定价策略
在考虑了品类为单位的补货和定价策略后,我们进一步针对单品制定了补货和定价策略。考虑到销售空间的限制,我们设置了一个约束条件,即单品总数需控制在27-33个之间。通过最优化算法,我们确定了每个单品的最优补货量和定价策略。
我们需要根据2023年6月24-30日的销售数据预测7月1日的销售量。
在选择哪些商品进行补货时,我们要确保所选商品的总数在27-33个之间。 我们需要确保每个商品的补货量至少为2.5千克。
我们需要考虑如何定价以最大化利润。这是一个相当复杂的优化问题。为简化问题,我们可以首先考虑以下策略:
使用过去一周的销售数据预测每种商品的需求。 选择预期需求最高的27-33种商品进行补货。 使用之前计算的最优利润率来定价。
成本加成定价模型和我们在第二问中建立的价格-销量的线性关系来优化成本利润率,并且基于这一优化的成本利润率来确定补货量和定价策略。
具体步骤如下:
使用之前建立的线性模型,其中销量 Q 和价格 PP 的关系为:Q=a×P+b 根据成本加成定价模型,价格可以表示为:P=C(1+r) 其中
C 是单位成本,r 是成本利润率。 代入价格-销量的线性模型,我们得到:Q=a×C(1+r)+b 使用最优化算法优化
r,即成本利润率,来最大化利润。利润 Π 可以表示为:Π=Q×(P−C) 代入上述公式,我们得到:Π=(a×C(1+r)+b)×(C(1+r)−C)
我们的目标是最大化 ΠΠ。使用约束 0≤r≤0.20 (即成本利润率在0到20%之间),我们可以使用最优化算法求解最优的 r。
具体实现代码可以参考文档
- 建议采集的额外数据
为了更好地制定蔬菜商品的补货和定价策略,我们建议商超采集更多相关数据,如客户反馈、库存数据、促销活动数据、竞争对手定价策略、季节性和天气数据以及供应链数据。这些建议是基于这些数据能为商超提供更全面的市场趋势、客户需求和供应链状况的信息,从而帮助其制定更有效的补货和定价策略。
结论
通过上述分析,我们为商超提供了一个全面的蔬菜商品补货和定价策略框架。我们使用了多种数据分析和最优化方法,如Apriori关联分析、线性回归、最优化算法等,确保了策略的科学性和实用性。此外,我们还为商超提供了关于如何进一步改进补货和定价策略的建议。
总体而言,这次分析不仅为商超提供了具体的补货和定价策略,还为其提供了一种系统性、数据驱动的决策制定方法。
为了更好地制定蔬菜商品的补货和定价决策,除了销售历史数据和批发价格数据,商超还可以考虑采集以下相关数据:
客户反馈和满意度数据:
意见:了解客户对当前商品的反馈和满意度可以帮助商超调整商品的品质、种类和价格。
理由:如果某些商品的反馈不佳,可能需要考虑更换供应商或降低补货量;如果某些商品的反馈很好,可以增加补货量并优化定价策略。
库存数据:
意见:知道当前的库存水平可以帮助商超更精确地决定补货量。
理由:避免过度补货或缺货,确保库存与需求相匹配。
促销和营销活动数据:
意见:了解促销和营销活动的效果可以帮助商超优化未来的促销策略。
理由:确定哪些促销活动最有效,以及如何定价来吸引更多的客户。
竞争对手的定价和促销策略数据:
意见:了解市场上的竞争对手如何定价和促销可以帮助商超制定更有竞争力的策略。
理由:确保商超的价格和促销活动与市场趋势和竞争对手的策略相匹配。
季节性和天气数据:
意见:某些蔬菜的需求可能受到季节和天气的影响。
理由:例如,在炎热的夏天,客户可能更倾向于购买清凉的蔬菜,如黄瓜和西红柿;而在冬天,他们可能更倾向于购买适合炖汤的蔬菜,如白菜和胡萝卜。
供应链数据:
意见:了解供应链的效率、可靠性和成本可以帮助商超选择更好的供应商和优化补货策略。
理由:如果某个供应商经常延迟交货或提供的商品品质不佳,商超可能需要考虑更换供应商。
总之,除了传统的销售和价格数据,商超还可以考虑采集多种相关数据,以更全面地理解市场趋势、客户需求和供应链状况,从而制定更有效的补货和定价策略。
每文一语
思路参考,只供学习
相关文章:

【多思路附源码】2023高教社杯 国赛数学建模C题思路 - 蔬菜类商品的自动定价与补货决策
赛题介绍 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此, 商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬…...

Vue2+Vue3基础入门到实战项目(六)——课程学习笔记
镇贴!!! day07 vuex的基本认知 使用场景 某个状态 在 很多个组件 来使用 (个人信息) 多个组件 共同维护 一份数据 (购物车) 构建多组件共享的数据环境 1.创建项目 vue create vuex-demo 2.创建三个组件, 目录如下 |-components |--Son1.…...

QT—基于http协议的网络文件下载
1.常用到的类 QNetworkAccessManager类用于协调网络操作,负责发送网络请求,创建网络响应 QNetworkReply类表示网络请求的响应。在QNetworkAccessManager发送一个网络请求后创建一个网络响应。它提供了以下信号: finished():完成…...

SpringBoot-配置优先级
配置 SpringBoot项目支持的三种格式的配置文件 application.properties:这是最常用的配置文件类型,使用键值对的形式来配置应用程序的属性。可以在该文件中配置应用程序的端口号、数据库连接信息、日志级别等。 application.yml:这是一种更…...

科普初步了解大模型
目录 一、大模型的简单认知 (一)官方定义 (二)聚焦到大语言模型 (三)大模型的应用举例 二、如何得到大模型 (一)整体的一般步骤 训练自己的模型 使用预训练模型 选择适当的…...

Nginx 和 网关的关系是什么
分析&回答 Nginx也可以实现网关,可以实现对api接口的拦截,负载均衡、反向代理、请求过滤等。网关功能可以进行扩展,比如:安全控制,统一异常处理,XXS,SQL注入等;权限控制,黑白名…...

解决springboot项目中的groupId、package或路径的混淆问题
对于像我一样喜欢跳跃着学习的聪明人来说,肯定要学springboot,什么sevlet、maven、java基础,都太老土了,用不到就不学。所以古代的聪明人有句话叫“书到用时方恨少”,测试开源项目时,编译总是报错ÿ…...

Vmware 网络恢复断网和连接
如果你的 虚拟机无法联网了,比如: vmware 无法将网络更改为桥接状态: 没有未桥接的主机网络适配器 等各种稀奇古怪的问题; 按照下面操作 还远默认设置 包你解决各种问题!...

学生来看!如何白嫖内网穿透?点进来!
文章目录 前言本教程解决的问题是:按照本教程方法操作后,达到的效果是前排提醒: 1 搭建虚拟机1.1 下载文件vmvare虚拟机安装包1.2 安装VMware虚拟机:1.3 解压虚拟机文件1.4 虚拟机初始化1.5 没有搜索到解决方式:1.6 虚…...

C++中的stack和queue
文章目录 1. stack的介绍和使用1.1 stack的介绍1.2 stack的使用 2. queue的介绍和使用2.1 queue的介绍2.2 queue的使用 3 priority_queue的介绍和使用3.1 priority_queue的介绍3.2 priority_queue的使用 4. 容器适配器4.1 什么是适配器4.2 STL标准库中stack和queue的底层结构4.…...

Ubuntu-22.04通过RDP协议连接远程桌面
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、RDP是什么?二、配置1.打开远程桌面功能2.验证服务3.防火墙配置4.测试效果 总结 前言 由于一些特殊需要,我需要通过远程桌面连接到U…...

20230908java面经整理
1.cpp和java的区别 cpp可以多重继承,对表java中的实现多个接口 cpp支持运算符重载、goto、默认函数参数 cpp自动强转,导致不安全;java必须显式强转 java提供垃圾回收机制,自动管理内存分配,当gc要释放无用对象时调用f…...

uniapp 开发App 网络异常如何处理
我对该问题思考的不是很清楚,目前只想到了基本的解决方案 第一、客户端的网络异常(断网) 1. 断网情况 一定要弹出信息提示,目前最好的解决方式就是在uni.request封装的统一方法中写提示 //1. 封装的网络请求 async function se…...

docker安装常用软件
Linux系统安装docker请参考:https://mp.csdn.net/mp_blog/creation/editor/128176825 docker安装mysql 1、拉镜像:docker pull mysql:8.0.26 2、创建数据目录: mkdir -p /mnt/data/mysql/data mkdir -p /mnt/data/mysql/logs mkdir -p /mn…...

CocosCreator3.8研究笔记(五)CocosCreator 脚本说明及使用(下)
在Cocos Creator中,脚本代码文件分为模块和插件两种方式: 模块一般就是项目的脚本,包含项目中创建的代码、引擎模块、第三方模块。 插件脚本,是指从 Cocos Creator 属性检查器中导入的插件,一般是引入第三方引入库文件…...

Adobe Acrobat Reader界面改版 - 解决方案
问题 日期:2023年9月 Adobe Acrobat Reader下文简称Adobe PDF Reader,此软件会自动进行更新,当版本更新至2023.003.20284版本后。 软件UI界面会大改版:书签页变成了右边、工具栏变到了左边、缩放按钮变到了右下角,如…...

实用调试技巧(2)
文章目录 6. 如何写出好(易于调试)的代码6.1 优秀的代码:6.2 示范:6.3 const的作用 7. 编程常见的错误7.1 编译型错误7.2 链接型错误7.3 运行时错误 附: 6. 如何写出好(易于调试)的代码 6.1 优…...

海外ASO优化之如何优化游戏应用
如果我们发布了一款手机游戏或者管理了一款手机游戏,那么需要确保我们的手机游戏对合适的人可见,目的是增加应用的下载量。 1、优化游戏元数据的关键词。 Apple和Google在应用商店中为我们提供有限的空间,来描述手机游戏及其优势。我们需要使…...

SpringMVC: Java Web应用开发的框架之选
引言 在当今的软件开发领域中,Web应用的需求不断增长。为了满足这种需求,各种Web框架应运而生。其中,SpringMVC作为一种优秀的Java Web框架,受到广泛关注和使用。本文将以文章的形式给您讲解SpringMVC的重要概念、工作原理和核心…...

【华为设备升级】AR路由器升级设备软件示例
升级设备软件示例 通过介绍设备升级的具体步骤,帮助用户顺利完成系统设备升级。 组网需求 设备当前系统软件版本已经不能满足用户需要,用户需要更大的规格和部署更多的特性,此时用户需要对系统软件进行升级。 如图1所示,网络中的某…...

Dataset 的一些 Java api 操作
文章目录 一、使用 Java API 和 JavaRDD<Row> 在 Spark SQL 中向数据帧添加新列二、foreachPartition 遍历 Dataset三、Dataset 自定义 Partitioner四、Dataset 重分区并且获取分区数 一、使用 Java API 和 JavaRDD 在 Spark SQL 中向数据帧添加新列 在应用 mapPartition…...

Vue + Element UI 前端篇(十一):第三方图标库
Vue Element UI 实现权限管理系统 前端篇(十一):第三方图标库 使用第三方图标库 用过Elment的同鞋都知道,Element UI提供的字体图符少之又少,实在是不够用啊,幸好现在有不少丰富的第三方图标库可用&…...

HDFS:Hadoop文件系统(HDFS)
Hadoop文件系统(HDFS)是一个分布式文件系统,主要用于存储和处理大规模的数据集。HDFS是Apache Hadoop的核心组件之一,能够支持上千个节点的集群,并能够处理PB级别的数据。 HDFS将大文件切割成小的数据块(默…...

SpringMvc--综合案例
目录 1.SpringMvc的常用注解 2.参数传递 基础类型(String) 创建一个paramController类: 创建一个index.jsp 测试结果 复杂方式 编辑 测试结果 RequestParam 测试结果 PathVariable 测试结果 RequestBody pom.xml依赖导入 输…...

工业4.0时代生产系统对接集成优势,MES和ERP专业一体化管理-亿发
在现代制造业中,市场变化都在不断加速。企业面临着不断加强生产效率、生产质量和快速适应市场需求的挑战。在制造行业,日常管理中的ERP系统、MES系统就显得尤为重要。越来越多的企业正在采用MES系统和ERP管理系统的融合,以实现智能化生产管理…...

IT运维监控系统和网络运维一样吗
IT运维监控系统和网络运维不是一样的。IT运维监控系统是一系列IT管理产品的统称,它所包含的产品功能强大、易于使用、解决方案齐全,可一站式满足用户的各种IT管理需求。而网络运维是指对网络设备进行监控、维护和管理,包括硬件故障的排除、软…...

c语言flag的使用
flag在c语言中标识某种状态或记录某种信息,可以通过修改flag中来控制程序流程,判断某种状态是否存在或记录某种信息 操作:(1)初始化 (2)赋值 (3)判断 (4)修改 (5)去初始化 #include <stdlib.h>int power_state_check;int main() {int i 0;power_state_check…...

docker push image harbor http 镜像
前言 搭建的 harbor 仓库为 http 协议,在本地登录后,推送镜像发生如下报错: docker push 192.168.xx.xx/test/grafana:v10.1.1 The push refers to repository [192.168.xx.xx/test/grafana] Get "https://192.168.xx.xx/v2/": dia…...

羊城杯2023 部分wp
目录 D0nt pl4y g4m3!!!(php7.4.21源码泄露&pop链构造) Serpent(pickle反序列化&python提权) ArkNights(环境变量泄露) Ez_misc(win10sinpping_tools恢复) D0nt pl4y g4m3!!!(php7.4.21源码泄露&pop链构造) 访问/p0p.php 跳转到了游戏界面 应该是存在302跳转…...

解读Java对Execl读取数据
1.读取execl文件路径,或者打开execl // 初始化文件流FileInputStream in = null;in = new FileInputStream(new File(path));workbook = new XSSFWorkbook(in);sheet = workbook.getSheetAt(0);rows = sheet.getPhysicalNumberOfRows(); 2.读取execl中sheet页数,即获取当前E…...