当前位置: 首页 > news >正文

概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式

目录

  • 1. 背景
  • 2. 全概率公式
  • 3. 贝叶斯公式

1. 背景

下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽到了金卡,那么请问他是在手机上抽到的还是在电脑上抽到的?
背景

2. 全概率公式

上述问题中,我们先考虑小B抽到金卡这件事的概率,设玩电脑的概率为 P ( c ) P(c) P(c),玩手机的概率为 P ( p ) P(p) P(p),抽到金卡的概率为 P ( v ) P(v) P(v)

  • 如果小B是在电脑上抽到的金卡,那么其概率为 P ( c ) P ( v ∣ c ) P(c)P(v|c) P(c)P(vc),就是玩电脑的概率乘上在电脑上抽到金卡的概率。
  • 如果小B是在手机上抽到的金卡,那么其概率为 P ( p ) P ( v ∣ p ) P(p)P(v|p) P(p)P(vp),就是玩手机的概率乘上在手机上抽到金卡的概率。

上面两个式子分别计算了在手机上抽到金卡和在电脑上抽到金卡的概率,那么两者加起来就是小B抽到金卡的概率,即: P ( v ) = P ( c ) P ( v ∣ c ) + P ( p ) P ( v ∣ p ) P(v)=P(c)P(v|c)+P(p)P(v|p) P(v)=P(c)P(vc)+P(p)P(vp)。这就是全概率公式,简单来说就是该事件在所有可能的情况下发生的概率。

用一个图来表示更直观,如下图所示,是一个长宽为1的正方形,其面积代表了所有事件发生的可能性。玩电脑占了20%的面积,玩手机占了80%的面积;玩电脑抽到金卡,占了玩电脑这块区域里面的15%;玩手机抽到金卡,占了玩手机这块区域里面的5%。
概率图
那么抽到金卡的概率,即:
全概率公式

3. 贝叶斯公式

知道了全概率公式后,就很容易理解贝叶斯公式了。贝叶斯公式是建立在我们已经知道结果的情况下,即我们知道小B已经抽到金卡的情况下,反推小B是玩电脑抽到金卡的概率和玩手机抽到金卡的概率。

那么玩电脑抽到金卡的概率可以用图表达为:
玩电脑的概率
表达为数学公式为:
P ( c ∣ v ) = P ( c ) P ( v ∣ c ) P ( v ) P(c|v)=\frac{P(c)P(v|c)}{P(v)} P(cv)=P(v)P(c)P(vc)

同理,玩手机抽到金卡的概率可以用图表达为:
玩手机的概率
表达为数学公式为:
P ( p ∣ v ) = P ( p ) P ( v ∣ p ) P ( v ) P(p|v)=\frac{P(p)P(v|p)}{P(v)} P(pv)=P(v)P(p)P(vp)

这里 P ( p ∣ v ) P(p|v) P(pv) P ( c ∣ v ) P(c|v) P(cv) 称之为后验概率(posterior),即我们知道了结果,反推过程发生的概率; P ( c ) P(c) P(c) P ( p ) P(p) P(p) 称之为先验概率(prior),即我们还暂时不知道后面的情况,在知道之前事件发生的可能性; P ( v ∣ c ) P(v|c) P(vc) P ( p ∣ c ) P(p|c) P(pc) 称之为似然(likelihood),即在某个情况下,事件发生的可能性。

相关文章:

概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式

目录 1. 背景2. 全概率公式3. 贝叶斯公式 1. 背景 下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽…...

深入了解 Axios 的 put 请求:使用技巧与最佳实践

在前端开发中,我们经常需要与后端服务器进行数据交互。其中,PUT 请求是一种常用的方法,用于向服务器发送更新或修改数据的请求。通过发送 PUT 请求,我们可以更新服务器上的资源状态。 Axios 是一个流行的 JavaScript 库&#xff0…...

浅谈Http协议、TCP协议(转载)

TCP标志位,有6种标示:SYN(synchronous建立联机) ,ACK(acknowledgement 确认) ,PSH(push传送),FIN(finish结束) ,RST(reset重置), URG(urgent紧急) Sequence number(顺序号码) ,Acknowledge num…...

flatten-maven-plugin使用

这篇文章主要介绍了flatten-maven-plugin使用,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下 − 目录 一、简介 1.1 作用1.2 goal介绍二、使用总结 一、简介 1.1 作用 将pom工程父子pom的版…...

Vue3中快速简单使用CKEditor 5富文本编辑器

Vue3简单使用CKEditor 5 前言准备定制基础配置富文本配置目录当前文章demo目录结构 快速使用demo 前言 CKEditor 5就是内嵌在网页中的一个富文本编辑器工具 CKEditor 5开发文档(英文):https://ckeditor.com/docs/ckeditor5/latest/index.htm…...

qt简易网络聊天室 数据库的练习

qt网络聊天室 服务器: 配置文件.pro QT core gui networkgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecated (the exac…...

Navicat连接mysql8.0:提示无法加载身份验证插件“caching_sha2_password”

Navicat连接mysql时,提示:Unable to load authentication plugin ‘caching_sha2_password‘. 原因:mysql 8.0 默认使用 caching_sha2_password 身份验证机制。 D:\MySQL8.0\install\bin>mysql -uroot -p123456789 #登录 mysql: [War…...

手写签名到背景上合为1张图

手写签名到背景上合为1张图 package.json中 "signature_pad": "3.0.0-beta.3"<template><div class"home"><canvas id"canvas" width"500" height"300"></canvas><button click"…...

华为认证系统学习大纲及课程

前言 任何学习过程都需要一个科学合理的学习路线&#xff0c;才能够有条不紊的完成我们的学习目标。华为认证网络工程师所需学习的内容纷繁复杂&#xff0c;难度较大&#xff0c;所以今天特别为大家整理了一个全面的华为认证网络工程师学习大纲及课程&#xff0c;帮大家理清思…...

某米ax3000路由器组网解析

我们使用某米k60手机与某米ax3000 wifi6路由器组网&#xff0c;来分析和学习网络速率与瓶颈限制。 某米 AX3000 路由器简介 某米 AX3000 路由器是一款支持 WiFi 6 的双频路由器&#xff0c;它的 MIMO 是 22&#xff0c;也就是两根天线。MIMO 是 Multiple Input Multiple Outpu…...

【leetcode 力扣刷题】数学题之除法:哈希表解决商的循环节➕快速乘求解商

两道和除法相关的力扣题目 166. 分数到小数29. 两数相除快速乘解法一&#xff1a;快速乘变种解法二&#xff1a; 二分查找 快速乘 166. 分数到小数 题目链接&#xff1a;166. 分数到小数 题目内容&#xff1a; 题目是要我们把一个分数变成一个小数&#xff0c;并以字符串的形…...

Union类型和集合的union()方法-set.union()

Union类型和集合的Union 方法 一、Union类型1.Union类型由来2.Union类型的语法3.Union类型的使用4.一些等价写法 二、Set.union()union() 语法示例代码 一、Union类型 1.Union类型由来 Python中的Union类型是 3.10版本引入的新功能之一。它是一种特殊的类型注释&#xff0c;用…...

简明SQL别名指南:掌握AS实现列名更名

在 SQL 查询中&#xff0c;使用 {原始字段名} as {别名} 的语法来为查询结果的列赋予更直观的名称&#xff0c;以提高查询结果的可读性和可理解性。 以下是用到的表。 用AS更名 例如&#xff0c;查询表1的name字段&#xff0c;并将其更名为"名字"&#xff0c;同时查…...

基于量子密钥分发和区块链技术的新一代加密通信系统

量子通信与区块链构建下一代加密通信基础设施 量子技术和区块链技术是国家信息安全和国家数字化转型的重要组成部分&#xff0c;在国家战略中具有重要地位。“十四五”规划纲要将“加快数字发展建设数字中国”作为独立篇章&#xff0c;指出要进一步明确发展云计算、大数据、物联…...

网络安全-子域名收集

本文为作者学习文章&#xff0c;按作者习惯写成&#xff0c;如有错误或需要追加内容请留言&#xff08;不喜勿喷&#xff09; 本文为追加文章&#xff0c;后期慢慢追加 子域名 子域名指二级域名,二级域名是顶级域名(一级域名)的下一级比如mail.heetian.com和bbs.heetian.com…...

go-zero jwt 鉴权快速实战

前面我们分享了 go-zero 的快速实战以及日志组件的剖析&#xff0c;本次我们来实战使用 go-zero jwt 鉴权 本次文章主要是分享关于 go-zero 中 jwt 的使用方式&#xff0c;会以一个 demo 的方式来进行实战&#xff0c;对于使用 goctl 工具以及安装细节就不在赘述&#xff0c;有…...

9.8day58 单调栈

739. 每日温度 - 力扣&#xff08;LeetCode&#xff09; 知识点&#xff1a;1.建栈 2.如果后面要加入的数小于栈顶元素就把数组的下标压进栈里 3.反之 就让该数于栈顶元素进行比较 如果该数大于栈顶元素&#xff08;while&#xff09; 就把栈顶元素下表对应的arr数组的值进行…...

快速完成工信部APP备案流程_以阿里云APP备案为例

阿里云APP备案流程分为6步&#xff0c;APP备案成功后应用可以上架&#xff0c;登录阿里云账号填写APP信息&#xff0c;等待阿里云初审&#xff0c;初审通过后进行工信部短信核验&#xff0c;管局审核通过后APP即可备案成功&#xff0c;最后移动APP应用可以分发平台上架&#xf…...

uniapp中UView中 u-form表单在v-for循环下如何进行表单校验

1、数据data格式 注&#xff1a;rule绑定的tableFromRule中要和表单tableFrom下面放置一个同名数组&#xff0c;确保u-form能找到 tableFrom: {tableData: [//数据详情列表]},tableFromRule: {//校验tableData: [//数据详情列表]},formRules:{localation:[{required: true,mes…...

工作新时代,腾讯轻联塑造高效办公未来

腾讯轻联&#xff1a;开启便捷、高效的集成新纪元 ⭐ 写在前面⭐ 使用模板快速起步⭐ 自定义流程初体验⭐ 无与伦比的集成强者⭐ 写在最后 ⭐ 写在前面 在当今竞争激烈的商业环境中&#xff0c;提高企业的办公效率和工作流程自动化变得至关重要。腾讯轻联&#xff0c;作为新一…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...