王道数据结构编程题 查找
二叉树定义
以下为本文解题代码的二叉树定义。
struct TreeNode {int val;TreeNode* left, *right;TreeNode(int val = 0, TreeNode* left = nullptr, TreeNode* right = nullptr): val(val), left(left), right(right) {}
};
递归二分查找
题目描述
写出二分查找的递归算法。初始调用时,left 为1,right 为 n.
解题代码
bool recurBS(vector<int>& nums, int target, int left, int right) {if (left > right) return false;int mid = (left + right) / 2;if (nums[mid] == target) return true;else if (nums[mid] > target) {return recurBS(nums, target, left, mid - 1);}else {return recurBS(nums, target, mid + 1, right);}
}
优化顺序查找
题目描述
线性表中各结点的检索概率不等时,可用如下策略提高顺序检索的效率:若找到指定的结点,则将该结点和其前驱节点(若存在)交换,使得经常被检索的结点尽量位于表的前端。试设计在顺序结构和链式结构的线性表上实现上述策略的顺序检索算法。
解题代码
顺序表
bool optimisedSS(vector<int>& nums, int target) {for (int i = 0; i < nums.size(); ++i) {if (nums[i] == target) {if (i > 0) {swap(nums[i - 1], nums[i]);}return true;}}return false;
}
链表
bool optimisedSS(ListNode* head, int target) {if (head == nullptr) return false;ListNode* dummy = new ListNode(-1, head); // 哨兵结点if (dummy->next->val == target) return true;while (dummy->next->next != nullptr) {if (dummy->next->next->val == target) {ListNode* pre = dummy;ListNode* node1 = dummy->next;ListNode* node2 = dummy->next->next;pre->next = node2;node1->next = node2->next;node2->next = node1;return true;}dummy = dummy->next;}return false;
}
判定二叉搜索树
题目描述
试编写一个算法,判断给定的二叉树是否是二叉搜索树。
解题代码
bool dfs(TreeNode* root, int preVal) {if (root == nullptr) return true;if (!dfs(root->left, preVal) || root->val <= preVal) {return false;}preVal = root->val;return dfs(root->right, preVal);
}bool isBST(TreeNode* root) {int lastVal = INT32_MIN;return dfs(root, lastVal);
}
计算某结点层次
题目描述
设计一个算法,求出指定结点在给定二叉排序树中的层次。
解题代码
int dfs(TreeNode* root, TreeNode* node, int depth) {if (root == nullptr) return 0;if (root->val == node->val) {return depth;}else if (root->val < node->val) {return dfs(root->right, node, depth + 1);}else {return dfs(root->left, node, depth + 1);}
}int calNodeDepth(TreeNode* root, TreeNode* node) {return dfs(root, node, 1);
}
判定平衡二叉树
题目描述
利用二叉树遍历的遍历的思想,编写一个判断二叉树是否是平衡二叉树的算法。
解题代码
O(n^2)
int calDepth(TreeNode* root) {if (root == nullptr) return 0;return 1 + max(calDepth(root->left), calDepth(root->right));
}bool isBalanced(TreeNode* root) {if (root == nullptr) return true;int lDepth = calDepth(root->left);int rDepth = calDepth(root->right);return abs(lDepth - rDepth) <= 1 && isBalanced(root->left) && isBalanced(root->right);
}
在每次递归判断左右子树是否平衡时,需要重新计算其高度,因此引入了大量不必要的计算。而如果某棵树的子树之一已经是非平衡树,那么这棵树一定是非平衡树,根据该性质,可将对平衡的判断改为自底向上进行。以下为自底向上判断平衡的方式,可将时间复杂度优化至 O(n).
O(n)
int calDepth(TreeNode* root) {if (root == nullptr) return 0;int lDepth = calDepth(root->left);int rDepth = calDepth(root->right);if (lDepth == -1 || rDepth == -1 || abs(lDepth - rDepth) >= 2) {return -1;}return 1 + max(lDepth, rDepth);
}bool isBalanced(TreeNode* root) {return calDepth(root) >= 0;
}
二叉搜索树最大和最小结点
题目描述
设计一个算法,求出给定二叉搜索树中最小和最大的关键字。
解题代码
int calMaxVal(TreeNode* root) {if (root->right == nullptr) return root->val;return calMaxVal(root->right);
}int calMinVal(TreeNode* root) {if (root->left == nullptr) return root->val;return calMinVal(root->left);
}pair<int, int> calMaxMin(TreeNode* root) {int minVal = root->left == nullptr ? root->val : calMinVal(root->left);int maxVal = root->right == nullptr ? root->val : calMaxVal(root->right);return make_pair(minVal, maxVal);
}
二叉搜索树值不小于 k 的元素
题目描述
设计一个算法,从大到小输出二叉搜索树中所有值不小于 k 的元素。
解题代码
void printNotSmallerK(TreeNode* root, int k) {if (root == nullptr) return;printNotSmallerK(root->right, k);if (root->val >= k) {cout << root->val << " ";}else return;printNotSmallerK(root->left, k);
}
查找第k小的元素
题目描述
编写一个递归算法,在一棵有 n 个结点的,随机建立起来的二叉搜索树上查找第 k (1 <= k <= n)小的元素,并返回指向该结点的指针,要求算法的平均时间复杂度为 O(logn)。二叉搜索树中的每个结点除 data, lchild, rchild 等数据成员外,增加一个 count 成员,保存以该结点为根的子树上的结点个数。
解题代码
TreeNode* findKthNode(TreeNode* root, int& k) {if (root == nullptr) return nullptr;TreeNode* left = findKthNode(root->left, k);if (left != nullptr) return left;if (--k == 0) return root;return findKthNode(root->right, k);
}
相关文章:
王道数据结构编程题 查找
二叉树定义 以下为本文解题代码的二叉树定义。 struct TreeNode {int val;TreeNode* left, *right;TreeNode(int val 0, TreeNode* left nullptr, TreeNode* right nullptr): val(val), left(left), right(right) {} };递归二分查找 题目描述 写出二分查找的递归算法。初…...
vue 部分知识点总结
计算属性和方法有什么区别,怎么选择? 在编程中,计算属性和方法都是用于处理数据的工具,但它们有一些区别。以下是它们的区别和如何选择的几个因素: 执行方式:计算属性是基于依赖的响应式系统,在…...
谷粒商城----ES篇
一、product-es准备 P128 ES在内存中,所以在检索中优于mysql。ES也支持集群,数据分片存储。 需求: 上架的商品才可以在网站展示。上架的商品需要可以被检索。 分析sku在es中如何存储 商品mapping 分析:商品上架在es中是存s…...
Redis3.2.1如何设置远程连接?允许局域网访问
背景: 电脑A的redis需要开放给电脑B使用,二者处于同一局域网 【后面会补充更详细的踩坑历程,先发出来作为记录】 过程: 在你查了很多方法后,如果还是没有解决, 尝试考虑一下你的redis配置文件是不是修…...
网络原理(二)TCP的可靠传输
网络原理(一)目录 网络原理应用层传输层先说UDP(不可靠传输)重点说明TCP(可靠传输)一、确认应答二、超时重传三、链接管理建立连接断开链接 四、滑动窗口五、流量控制&am…...
Chat GPT 使用教学,文字创作、学习
目录 文章长篇文章学习任何东西文章 大纲、目录、标题、内容 写出10个即将被AI取代的工作的文章标题 当然,以下是一些可能会被AI取代的工作的文章标题:"未来十年,AI将如何改变传统制造业的就业格局?" "智能客服崛起:人工智能如何重塑客户服务行业?"…...
Android之 Canvas绘制
一 Canvas介绍 1.1 Canvas 是绘制图形的重要类之一,它可以在 View 或 SurfaceView 上绘制各种图形和文本. 1.2 要创建 Canvas,首先需要有一个 View 或 SurfaceView 对象,在 View 或 SurfaceView 的绘制方法中,可以通过 Canvas 的…...
Vue + Element UI 前端篇(十五):嵌套外部网页
Vue Element UI 实现权限管理系统 前端篇(十五):嵌套外部网页 嵌套外部网页 在有些时候,我们需要在我们的内容栏主区域显示外部网页。如查看服务端提供的SQL监控页面,接口文档页面等。 这个时候就要求我们的导航菜…...
Jabbi的Rust学习日记(二)
特征: 就目前我学习到的rust知识来看,我认为rust有以下几个特征: 链式调用表达式强类型 use 使用use导入包,我觉得rust的导包和python的很像 main main函数是rust可执行程序最先执行的代码,可以说是程序的入口&…...
【杂】环形时钟配色笔记
配色网站笔记 coolorsflatuicolorscolordrophttps://www.webdesignrankings.com/resources/lolcolors/ 配色2...
会话跟踪技术学习笔记(Cookie+Session)+ HTTP学习笔记
一、核心知识点(重点): 1.1 Cookie 1. Cookie:是一种客户端会话技术,数据会被保存在客户端,Cookie会携带数据访问服务器,用以完成一次会话内多次请求间的数据共享 2. 过程:浏览器…...
分类预测 | MATLAB实现PCA-BiLSTM(主成分双向长短期记忆神经网络)分类预测
分类预测 | MATLAB实现PCA-BiLSTM(主成分双向长短期记忆神经网络)分类预测 目录 分类预测 | MATLAB实现PCA-BiLSTM(主成分双向长短期记忆神经网络)分类预测预测效果基本介绍程序设计参考资料致谢 预测效果 基本介绍 分类预测 | MATLAB实现PCA-BiLSTM(主成分双向长短期记忆神经网…...
Yarn 和 npm 的区别
Yarn 和 npm 都是 JavaScript 的包管理工具,它们的主要区别在于以下几个方面: 性能:Yarn 的安装速度和包的下载速度通常比 npm 更快,这是因为 Yarn 使用本地缓存和并行下载等技术来提高性能。 可靠性:Yarn 具有更好的…...
第20章 原子操作实验(iTOP-RK3568开发板驱动开发指南 )
在上一章节的实验中,对并发与竞争进行了实验,两个app应用程序之间对共享资源的竞争访问引起了数据传输错误,而在Linux内核中,提供了四种处理并发与竞争的常见方法,分别是原子操作、自旋锁、信号量、互斥体,…...
Android 开机自启动
APP需要开机自启动,要通过开机广播实现。 1,在AndroidManifest.xml中增加权限 <!-- .接收启动完成的广播权限 --><uses-permission android:name"android.permission.RECEIVE_BOOT_COMPLETED" /> 2,在AndroidManifes…...
01_前端css编写的三种方式
前言 CSS的引入方式共有三种:行内样式、内部样式表、外部样式表 一、内联式引入 用法: 在元素上直接通过style属性进行设置css样式设置 示例: <h1 style"color:red;">style属性的应用</h1> <p style"font-si…...
07-垃圾收集算法详解
上一篇:06-JVM对象内存回收机制深度剖析 1.分代收集理论 当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各…...
Redis高并发分布式锁实战
高并发场景秒杀抢购超卖bug实战重现 秒杀抢购场景下实战JVM级别锁与分布式锁 大厂分布式锁Resisson框架实战 Lua脚本语言快速入门与使用注意事项 Redisson分布式锁源码剖析 Redis主从架构锁失效问题解析 从CAP角度剖析Redis与Zookeeper分布式锁区别 Redlock分布式锁原理与…...
MybatisPlus分页插件使用
一. 效果展示 二. 代码编写 2.1 pom <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.2</version> </dependency>2.2 添加配置类 Configuration MapperScan(…...
Linux指令二【进程,权限,文件】
进程是一个具有一定独立功能的程序在一个数据集上的一次动态执行的过程,是操作系统进行 资源分配和调度的一个独立单位,是应用程序运行的载体。 一、进程基本指令 1.ps:当前的用户进程 ps 只显示隶属于自己的进程状态ps -aux 显示所有进程…...
uni-app运行到微信开发者工具-没有打印的情况
前言 到我们进场使用微信开发者工具时,就会发现它经常会有bug,特别是在软件更新,组件库更新之后 最近在更新微信开发者工具之后发现所有打印都不显示了,虽然是小问题-但对于强迫症很烦 以为是代码配置问题-结果是更新之后打印开…...
由前端接口入门学习后端的controller层
由前端接口入门学习后端的controller层 一、简单介绍一下controller层:二、前端调用后端接口时,一般会传递参数给后端,后端的控制层是如何接收的呢?三、更深入地介绍一下关于请求体参数DTO作为入参Map作为入参 本文是以一个前端工…...
HJ71 字符串通配符
Powered by:NEFU AB-IN Link 文章目录 HJ71 字符串通配符题意思路代码 HJ71 字符串通配符 题意 问题描述:在计算机中,通配符一种特殊语法,广泛应用于文件搜索、数据库、正则表达式等领域。现要求各位实现字符串通配符的算法。 要求ÿ…...
ffmpeg 开发笔记
参考: FFmpeg音视频处理 - 知乎 通过python实时生成音视频数据并通过ffmpeg推送和混流 - 知乎 直播常用 FFmpeg & ffplay 命令 - 知乎 音视频 FFMPEG 滤镜使用 - 知乎 官网: ffmpeg Documentation...
一种基于注意机制的快速、鲁棒的混合气体识别和浓度检测算法,配备了具有双损失函数的递归神经网络
A fast and robust mixture gases identification and concentration detection algorithm based on attention mechanism equipped recurrent neural network with double loss function 摘要 提出一个由注意力机制组成的电子鼻系统。首先采用端到端的编码器译码器ÿ…...
[运维|系统] go程序设置开机启动踩坑笔记
参考文献 记systemctl启动go程序 在Ubuntu上作为systemctl服务运行时Go找不到文件 go语言程序设置开机启动,配置不生效 需要在服务配置文件中加入工作目录配置,示例 WorkingDirectory/path/to/go/program/directory...
CRC原理介绍及STM32 CRC外设的使用
1. CRC简介 循环冗余校验(英语:Cyclic redundancy check,简称CRC),由 W. Wesley Peterson 于 1961 年首次提出的一种纠错码理论。 CRC是一种数据纠错方法,主要应用于数据通信或者数据存储的场合ÿ…...
Python 操作 Word
上次给大家介绍了 Python 如何操作 Excel ,是不是感觉还挺有趣的,今天为大家再介绍下,用 Python 如何操作 Word ,这个可能跟数据处理关系不大,用的也不多,不过可以先了解下都能实现什么功能,以备…...
Linux--进程创建(fork)-退出--孤儿进程
进程创建: ①使用fork函数创建一个进程,创建的新进程被称为子进程。 #include <unistd.h>//头文件 pid_t fork(void); fork函数调用成功,返回两次: 返回值为0, 代表当前进程为子进程; 返回值为非负数…...
LeetCode 热题 HOT 100:链表专题
LeetCode 热题 HOT 100:https://leetcode.cn/problem-list/2cktkvj/ 文章目录 2. 两数相加19. 删除链表的倒数第 N 个结点21. 合并两个有序链表23. 合并 K 个升序链表141. 环形链表142. 环形链表 II148. 排序链表160. 相交链表206. 反转链表234. 回文链表 2. 两数相…...
中央人民政府网站谢芳友高层访问/怎么开发自己的小程序
背景与文献简介可充电锌金属电池作为锂离子电池的潜在替代品,由于其成本低、容量大、使用安全的水系电解质的优势,近年来引起了广泛的关注。然而,在充电过程中,枝晶生长会导致电池性能退化,并增大电池的安全风险。近日…...
定制版网站建设详细报价单/百度在线扫一扫
网上的说明都不够详细,本人经过查阅英文资料才明白具体操作过程,下面来和大家一起分享经验。 安装前需要准备几个工具: 1.容量足够大的U盘 2.VMware ESX 4的ISO 下载地址:http://www.vmware.com/products/esx/ 3.syslinux 下载地址:http://ke…...
做景观要用的植物网站/外贸网站模板
使用第三方提供的swgger ui 可有效提高 web api 接口列表的阅读性,并且可以在页面中测试服务接口。 但本人在查阅大量资料并进行编码测试后,发现大部分的swagger实例并不能有效运行。例如如下两个网址:http://www.cnblogs.com/caodaiming/p/4…...
wordpress 主题制作 视频/杭州上城区抖音seo有多好
Python3.6如何安装Shapely Shapely是一个用于处理平面几何图形的Python库,它是基于GEOS C ++库的Python接口。对于需要进行地理信息、地图处理和绘制的项目,Shapely是一个非常有用的库。但是,如果您在安装Shapely时遇到了问题,这篇文章将为您提供指导。 安装前的准备工作在…...
wordpress自制主题/微博推广方案
过去几年,关于文本编辑框(Edit)控件的响应事件,我都是在主程序 while(GetMessage(&messages, NULL, 0, 0)) { ... } 捕获。 总感觉这种方式让人感觉不舒服。 今天想给一个 Edit 控件加一下按下【回车】的响应事件,我百度了一下࿰…...
瑞金市网站建设/百度手机助手下载2022官方正版
点击上方蓝色字体,选择“标星公众号”优质文章,第一时间送达99套Java企业级实战项目4000G架构师资料作者:乐傻驴链接:jianshu.com/u/d5950a6af4cd概述对于 Spring和 SpringBoot到底有什么区别,我听到了很多答案&#x…...