机器学习——K最近邻算法(KNN)
机器学习——K最近邻算法(KNN)
文章目录
- 前言
- 一、原理
- 二、距离度量方法
- 2.1. 欧氏距离
- 2.2. 曼哈顿距离
- 2.3. 闵可夫斯基距离
- 2.4. 余弦相似度
- 2.5. 切比雪夫距离
- 2.6. 马哈拉诺比斯距离
- 2.7. 汉明距离
- 三、在MD编辑器中输入数学公式(额外)
- 四、代码实现
- 2.1. 用KNN算法进行分类
- 2.2. 用KNN算法进行回归
- 五、模型的保存和加载
- 总结
前言
在传统机器学习中,KNN算法是一种基于实例的学习算法,能解决分类和回归问题,而本文将介绍一下KNN即K最近邻算法。

一、原理
K最近邻(KNN)算法是一种基于实例的学习算法,用于分类和回归问题。它的原理是根据样本之间的距离来进行预测。
核心思想是通过找到与待分类样本最相似的K个训练样本,来确定待分类样本的类别或者预测其数值。
假设存在一个样本数据集(训练集),并且样本集中每个数据都存在标签(即知道样本集中数据的分类情况)
KNN算法的步骤如下:
-
计算距离:对于给定的未知样本(没有标签值的测试集),计算它与训练集中每个样本的距离。常用的距离度量方法有欧氏距离、曼哈顿距离等。
-
选择K值:选择一个合适的K值,即要考虑的最近邻的数量。
-
选择最近邻:从训练集中选择K个距离最近的样本。
-
进行投票或计算平均值:对于分类问题,根据最近邻的标签进行投票,选取票数最多的标签作为预测结果。对于回归问题,根据最近邻的值计算平均值作为预测结果。
按我的理解其实就是将待分类的样本与训练集中的每个样本去计算距离,然后从训练集中选择K个与待分类样本最靠近的几个样本,然后再根据选取得最靠近的几个样本得标签值进行投票来分类。
对于回归问题,则统计K个最近邻样本的数值,然后通过平均或加权平均的方式计算出待分类样本的数值。
如图所示(可看出K值的选择对结果有很大的影响):

当K=3时,根据距离计算,待分类的样本点被划为黄色那一类;(因为2>1)
当K=5时, 根据距离计算,待分类的样本点被划为红色那一类;(因为3>2)
二、距离度量方法
参考文献
https://zhuanlan.zhihu.com/p/354289511
以下是一些常见的距离度量方法:
2.1. 欧氏距离
欧氏距离(Euclidean Distance):欧氏距离是最常见的距离度量方法,它是两个向量之间的直线距离。对于两个n维向量x和y,欧氏距离的计算公式为:
d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x,y) = \sqrt{\sum_{i=1}^{n}(x_{i}-y_{i})^{2}} d(x,y)=i=1∑n(xi−yi)2
其中,xi和yi分别表示向量x和y的第i个元素。
例如当n = 2 时,这就是中学学的二维平面中两点之间距离公式的计算了。
2.2. 曼哈顿距离
曼哈顿距离(Manhattan Distance):曼哈顿距离是两个向量之间的城市街区距离,也称为L1距离。对于两个n维向量x和y,曼哈顿距离的计算公式为:
d ( x , y ) = ∑ i = 1 n ∣ x i − y i ∣ d(x,y) = \sum_{i=1}^{n} |x_{i} -y_{i}| d(x,y)=i=1∑n∣xi−yi∣
2.3. 闵可夫斯基距离
闵可夫斯基距离(Minkowski Distance):闵可夫斯基距离是欧氏距离和曼哈顿距离的一般化形式,它可以根据参数p的不同取值变化为不同的距离度量方法。对于两个n维向量x和y,闵可夫斯基距离的计算公式为:
d ( x , y ) = ∑ i = 1 n ∣ x i − y i ∣ p p d(x,y) = \sqrt[p]{\sum_{i=1}^{n}|x_{i}-y_{i}|^{p}} d(x,y)=pi=1∑n∣xi−yi∣p
其中,xi和yi分别表示向量x和y的第i个元素,p为参数,当p=2时,闵可夫斯基距离等价于欧氏距离;当p=1时,闵可夫斯基距离等价于曼哈顿距离。
2.4. 余弦相似度
余弦相似度(Cosine Similarity):余弦相似度是衡量两个向量方向相似程度的度量方法,它计算两个向量之间的夹角余弦值。对于两个n维向量x和y,余弦相似度的计算公式为:
c o s ( θ ) = ∑ i = 1 n ( x i ∗ y i ) ∑ i = 1 n ( x i ) 2 ∗ ∑ i = 1 n ( y i ) 2 cos(\theta ) = \frac{\sum_{i=1}^{n}(x_{i} * y_{i})}{\sqrt{\sum_{i=1}^{n}(x_{i})^{2}}*\sqrt{\sum_{i=1}^{n}(y_{i})^{2}}} cos(θ)=∑i=1n(xi)2∗∑i=1n(yi)2∑i=1n(xi∗yi)
2.5. 切比雪夫距离
切比雪夫距离(Chebyshev Distance):切比雪夫距离是两个向量之间的最大绝对差距。对于两个n维向量x和y,切比雪夫距离的计算公式为:
d ( x , y ) = m a x i ( ∣ p i − q i ∣ ) d(x,y) = \underset{i}{max}(|p_{i} -q_{i}|) d(x,y)=imax(∣pi−qi∣)
2.6. 马哈拉诺比斯距离
马哈拉诺比斯距离(Mahalanobis Distance):马哈拉诺比斯距离是一种考虑特征之间相关性的距离度量方法。它首先通过计算协方差矩阵来衡量特征之间的相关性,然后计算两个向量在经过协方差矩阵变换后的空间中的欧氏距离。对于两个n维向量x和y,马哈拉诺比斯距离的计算公式为:
d = ( x ⃗ − y ⃗ ) T S − 1 ( x ⃗ − y ⃗ ) d = \sqrt{(\vec{x}-\vec{y})^{T}S^{-1}(\vec{x}-\vec{y})} d=(x−y)TS−1(x−y)
其中,x和y分别表示向量x和y,S为x和y的协方差矩阵。
2.7. 汉明距离
汉明距离(Hamming Distance):汉明距离是用于比较两个等长字符串之间的差异的度量方法。对于两个等长字符串x和y,汉明距离的计算公式为:
d = 1 N ∑ i = 1 n 1 x i ≠ y i d = \frac{1}{N}\sum_{i=1}^{n}1_{x_{i}\neq y_{i}} d=N1i=1∑n1xi=yi
三、在MD编辑器中输入数学公式(额外)
在使用markdown文本编辑器时,对于数学公式的书写一般是使用到LaTeX这个排版系统,基于latex语法构建数学公式。
这对我这种刚开始接触的初学者是不友好的(在这之前还要学习LateX语法…)。
$$
$$
在这之间填入数学公式对应的LaTeX语法,就能获得对应的数学公式
对应的LaTeX语法可以从另一个编辑器——富文本编辑器 中获得:

将LaTeX公式复制过来,d(x,y) = \sqrt{\sum_{i=1}{n}(x_{i}-y_{i}){2}}
$$
$$
放于这两个之间,可以得到对应公式:
d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x,y) = \sqrt{\sum_{i=1}^{n}(x_{i}-y_{i})^{2}} d(x,y)=i=1∑n(xi−yi)2
嗯…,其实我也不太清楚为何我的Mardown编辑器中没有像富文本编辑器中那样的公式编辑器,(或许是要下载插件吗?),不用管这么多,能用就行。
四、代码实现
2.1. 用KNN算法进行分类
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)# 创建KNN分类器
knn = KNeighborsClassifier(n_neighbors=3)
#metric= "minkowski",距离度量默认是闵可夫斯基距离# 拟合模型
knn.fit(X_train, y_train)# 预测
y_pred = knn.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
Accuracy: 0.9833333333333333
2.2. 用KNN算法进行回归
from sklearn.neighbors import KNeighborsRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 加载数据集
boston = load_boston()
X = boston.data
y = boston.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建KNN回归器
knn = KNeighborsRegressor(n_neighbors=3)
# 拟合模型
knn.fit(X_train, y_train)
# 预测
y_pred = knn.predict(X_test)# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("MSE:", mse)
MSE: 21.65955337690632#计算R方值
print(knn.score(X_test,y_test))
0.7046442656646525#绘图展示
import matplotlib.pyplot as plt
plt.style.use("ggplot")
plt.scatter(y_test,y_pred)
plt.plot([min(y_test),max(y_test)],[min(y_pred),max(y_pred)],"k--",color = "green", lw = 2,)
plt.xlabel("y_test")
plt.ylabel("y_pred")
plt.show()

均方误差:
M S E = ∑ i = 1 n ( y t − y p ) 2 n MSE = \frac{\sum_{i=1}^{n}(y_t - y_p)^{2}}{n} MSE=n∑i=1n(yt−yp)2
再用线性回归试一下:
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
coefficients = model.coef_
intercept = model.intercept_# 构建回归公式
equation = f"y = {intercept} + {coefficients[0]}*x1 + {coefficients[1]}*x2 + ..."# 计算R^2值
r2_score = model.score(X_test, y_test)
print("R^2值:", r2_score)
R^2值: 0.6687594935356289
这些模型都是十分简单的模型,还未经过参数的调优和算法的优化。
五、模型的保存和加载
#模型的保存和加载
import pickle
with open("model.pkl","wb") as f:pickle.dump(knn,f)
with open("model.pkl","rb") as f:knn_loaded = pickle.load(f)print(knn_loaded.score(X_test,y_test))
0.7046442656646525
总结
本文从KNN算法的原理:(根据样本之间的距离来预测)出发,介绍了一些常见的距离度量方法,另外也介绍了一下在Markdown编辑器中输入数学公式,最后就是KNN算法在python中的分类和回归代码的实现。最后的最后就是模型的保存和加载。
道可道,非常道;名可名,非常名。
–2023-9-10 筑基篇
相关文章:
机器学习——K最近邻算法(KNN)
机器学习——K最近邻算法(KNN) 文章目录 前言一、原理二、距离度量方法2.1. 欧氏距离2.2. 曼哈顿距离2.3. 闵可夫斯基距离2.4. 余弦相似度2.5. 切比雪夫距离2.6. 马哈拉诺比斯距离2.7. 汉明距离 三、在MD编辑器中输入数学公式(额外࿰…...
同步FIFO的verilog实现(1)——计数法
一、FIFO概述 1、FIFO的定义 FIFO是英文First-In-First-Out的缩写,是一种先入先出的数据缓冲器,与一般的存储器的区别在于没有地址线, 使用起来简单,缺点是只能顺序读写数据,其数据地址由内部读写指针自动加1完成&…...
python正则表达式笔记1
最近工作中经常用到正则表达式处理数据,慢慢发现了正则表达式的强大功能,尤其在数据处理工作中,记录下来分享给大家。 一、 正则表达式语法介绍 正则表达式(或 RE)指定了一组与之匹配的字符串;模块内的函…...
YOLO目标检测——口罩规范佩戴数据集+已标注xml和txt格式标签下载分享
实际项目应用:目标检测口罩佩戴检测数据集的应用场景涵盖了公共场所监控、疫情防控管理、安全管理与控制以及人员统计和分析等领域。这些应用场景可以帮助相关部门和机构更好地管理口罩佩戴情况,提高公共卫生和安全水平,保障人们的健康和安全…...
Android 13 - Media框架(9)- NuPlayer::Decoder
这一节我们将了解 NuPlayer::Decoder,学习如何将 MediaCodec wrap 成一个强大的 Decoder。这一节会提前讲到 MediaCodec 相关的内容,如果看不大懂可以先跳过此篇。原先觉得 Decoder 部分简单,越读越发现自己的无知,Android 源码真…...
23.09.5 《CLR via C#》 笔记5
第六章 类型和成员基础 类型可以定义0或多个以下成员:常量、字段、实例构造器、类型构造器、方法、操作符重载、转换操作符、属性、事件、类型类型的可见性分为public和internal(默认)C#中,成员的可访问性分为private、protected、internal、protected …...
laravel部署api项目遇到问题总结
laravel线上部署问题 一、Ubuntu远程Mysql 61“Connection refused”二、Ubuntu更新php8三、线上部署Permission denied3.1、部署完之后访问域名出现报错:3.2、The /bootstrap/cache directory must be present and writable. 四、图片访问404五、git部署线上文件 一…...
lintcode 1646 · 合法组合【字符串DFS, vip 中等 好题】
题目 https://www.lintcode.com/problem/1646 给一个单词s,和一个字符串集合str。这个单词每次去掉一个字母,直到剩下最后一个字母。求验证是否存在一种删除的顺序,这个顺序下所有的单词都在str中。例如单词是’abc’,字符串集合是{‘a’,’…...
【多线程】线程安全 问题
线程安全 问题 一. 线程不安全的典型例子二. 线程安全的概念三. 线程不安全的原因1. 线程调度的抢占式执行2. 修改共享数据3. 原子性4. 内存可见性5. 指令重排序 一. 线程不安全的典型例子 class ThreadDemo {static class Counter {public int count 0;void increase() {cou…...
【用unity实现100个游戏之11】复刻经典消消乐游戏
文章目录 前言开始项目开始一、方块网格生成二、方块交换三、添加交换的动画效果四、水平消除检测五、垂直消除检测六、完善删除功能七、效果优化(移动方块后再进行消除检测)八、方块下落十、方块填充十一、后续 源码参考完结 前言 欢迎来到经典消消乐游…...
若依cloud 修改包名等
一、项目的项目名。 先改pom 然后在重命名文件 1、 修改主pom.xml <artifactId>ruoyi-api</artifactId> 缓存 <artifactId>zxf-api</artifactId> <groupId>com.ruoyi</groupId> <groupId>com.zhixiaofeng</groupId> 2、…...
健康系统练习
健康系统 项目建构: 前后端分离,前端vue3,后端Java,springboot做跨域处理,前端将在vscode中 的tomcat下部署,后端将在ideal中集成的tomcat中部署 创建项目工程在ideal中直接选用springi…创建,…...
网络协议从入门到底层原理学习(一)—— 简介及基本概念
文章目录 网络协议从入门到底层原理学习(一)—— 简介及基本概念一、简介1、网络协议的定义2、网络协议组成要素3、广泛的网络协议类型网络通信协议网络安全协议网络管理协议 4、网络协议模型对比图 二、基本概念1、网络互连模型2、计算机之间的通信基础…...
centos密码过期导致navicat无法通过SSH登录阿里云RDS问题
具体错误提示:2013 - Lost connection to server at "hand hake: reading initial communication packet, system error: 0 解决办法:更新SSH服务器密码...
对于pytorch和对应pytorch网站的探索
一、关于网站上面的那个教程: 适合PyTorch小白的官网教程:Learning PyTorch With Examples - 知乎 (zhihu.com) 这个链接也是一样的, 总的来说,里面讲了这么一件事: 如果没有pytorch的分装好的nn.module用来继承的话,需要设计…...
和AI聊天:动态规划
动态规划 动态规划(Dynamic Programming,简称 DP)是一种常用于优化问题的算法。它解决的问题通常具有重叠子问题和最优子结构性质,可以通过将问题分解成相互依赖的子问题来求解整个问题的最优解。 动态规划算法主要分为以下几个步…...
微信小程序——使用插槽slot快捷开发
微信小程序的插槽(slot)是一种组件化的技术,用于在父组件中插入子组件的内容。通过插槽,可以将父组件中的一部分内容替换为子组件的内容,实现更灵活的组件复用和定制。 插槽的使用步骤如下: 在父组件的wx…...
大数据技术之Hadoop:使用命令操作HDFS(四)
目录 一、创建文件夹 二、查看指定目录下的内容 三、上传文件到HDFS指定目录下 四、查看HDFS文件内容 五、下载HDFS文件 六、拷贝HDFS文件 七、HDFS数据移动操作 八、HDFS数据删除操作 九、HDFS的其他命令 十、hdfs web查看目录 十一、HDFS客户端工具 11.1 下载插件…...
静态路由配置实验:构建多路由器网络拓扑实现不同业务网段互通
文章目录 一、实验背景与目的二、实验拓扑三、实验需求四、实验解法1. 配置 IP 地址2. 按照需求配置静态路由,实现连接 PC 的业务网段互通 摘要: 本实验旨在通过配置网络设备的IP地址和静态路由,实现不同业务网段之间的互通。通过构建一组具有…...
Python函数的概念以及定义方式
一. 前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 二. 什么是函数? 假设你现在是一个工人,如果你实现就准备好了工具,等你接收到任务的时候, 直接带上工…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
