当前位置: 首页 > news >正文

使用 Python 的高效相机流

一、说明

        让我们谈谈在Python中使用网络摄像头。我有一个简单的任务,从相机读取帧,并在每一帧上运行神经网络。对于一个特定的网络摄像头,我在设置目标 fps 时遇到了问题(正如我现在所理解的——因为相机可以用 mjpeg 格式运行 30 fps,但不能运行原始),所以我决定深入研究 FFmpeg 看看它是否有帮助。

二、OpenCV和FFmpeg两个选项

        我最终让OpenCV和FFmpeg都工作了,但我发现了一件非常有趣的事情:FFmpeg性能优于OpenCV是我的主要用例。事实上,使用 FFmpeg,我读取帧的速度提高了 15 倍,整个管道的加速提高了 32%。我简直不敢相信结果,并多次重新检查了所有内容,但它们是一致的。

        注意:当我只是一帧一帧地读取时,性能完全相同,但是当我在读取帧后运行某些内容时,FFmpeg 速度更快(这需要时间)。我将在下面确切地说明我的意思。

2.1 openCV的代码实现

        现在,让我们看一下代码。首先 — 使用 OpenCV 读取网络摄像头帧的类:

class VideoStreamCV:def __init__(self, src: int, fps: int, resolution: Tuple[int, int]):self.src = srcself.fps = fpsself.resolution = resolutionself.cap = self._open_camera()self.wait_for_cam()def _open_camera(self):cap = cv2.VideoCapture(self.src)cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.resolution[0])cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.resolution[1])fourcc = cv2.VideoWriter_fourcc(*"MJPG")cap.set(cv2.CAP_PROP_FOURCC, fourcc)cap.set(cv2.CAP_PROP_FPS, self.fps)return capdef read(self):ret, frame = self.cap.read()if not ret:return Nonereturn framedef release(self):self.cap.release()def wait_for_cam(self):for _ in range(30):frame = self.read()if frame is not None:return Truereturn False

2.2 使用FFmpeg

  我使用功能,因为相机通常需要时间“热身”。FFmpeg 类使用相同的预热:wait_for_cam

class VideoStreamFFmpeg:def __init__(self, src: int, fps: int, resolution: Tuple[int, int]):self.src = srcself.fps = fpsself.resolution = resolutionself.pipe = self._open_ffmpeg()self.frame_shape = (self.resolution[1], self.resolution[0], 3)self.frame_size = np.prod(self.frame_shape)self.wait_for_cam()def _open_ffmpeg(self):os_name = platform.system()if os_name == "Darwin":  # macOSinput_format = "avfoundation"video_device = f"{self.src}:none"elif os_name == "Linux":input_format = "v4l2"video_device = f"{self.src}"elif os_name == "Windows":input_format = "dshow"video_device = f"video={self.src}"else:raise ValueError("Unsupported OS")command = ['ffmpeg','-f', input_format,'-r', str(self.fps),'-video_size', f'{self.resolution[0]}x{self.resolution[1]}','-i', video_device,'-vcodec', 'mjpeg',  # Input codec set to mjpeg'-an', '-vcodec', 'rawvideo',  # Decode the MJPEG stream to raw video'-pix_fmt', 'bgr24','-vsync', '2','-f', 'image2pipe', '-']if os_name == "Linux":command.insert(2, "-input_format")command.insert(3, "mjpeg")return subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, bufsize=10**8)def read(self):raw_image = self.pipe.stdout.read(self.frame_size)if len(raw_image) != self.frame_size:return Noneimage = np.frombuffer(raw_image, dtype=np.uint8).reshape(self.frame_shape)return imagedef release(self):self.pipe.terminate()def wait_for_cam(self):for _ in range(30):frame = self.read()if frame is not None:return Truereturn False

For timing function, I used decorator:run

def timeit(func):def wrapper(*args, **kwargs):t0 = time.perf_counter()result = func(*args, **kwargs)t1 = time.perf_counter()print(f"Main function time: {round(t1-t0, 4)}s")return resultreturn wrapper

        作为一个繁重的合成任务,我使用了这个简单的函数来代替神经网络(它也可以只是)。这是一个非常重要的部分,因为没有任何任务,OpenCV和FFmpeg的读取速度是相同的:time.sleep

def computation_task():for _ in range(5000000):9999 * 9999

        现在功能与我读取框架的循环,它的时间,运行:computation_task

@timeit
def run(cam: VideoStreamCV | VideoStreamFFmpeg, run_task: bool):timer = []for _ in range(100):t0 = time.perf_counter()cam.read()timer.append(time.perf_counter() - t0)if run_task:computation_task()cam.release()return round(np.mean(timer), 4)

        最后,我设置了几个参数,使用 OpenCV 和 FFmpeg 初始化 2 个视频流,并在没有和使用它的情况下运行它们。maincomputation_task

def main():fsp = 30resolution = (1920, 1080)for run_task in [False, True]:ff_cam = VideoStreamFFmpeg(src=0, fps=fsp, resolution=resolution)cv_cam = VideoStreamCV(src=0, fps=fsp, resolution=resolution)print(f"FFMPEG, task {run_task}:")print(f"Mean frame read time: {run(cam=ff_cam, run_task=run_task)}s\n")print(f"CV2, task {run_task}:")print(f"Mean frame read time: {run(cam=cv_cam, run_task=run_task)}s\n")

        这是我得到的:

FFMPEG, task False:
Main function time: 3.2334s
Mean frame read time: 0.0323sCV2, task False:
Main function time: 3.3934s
Mean frame read time: 0.0332sFFMPEG, task True:
Main function time: 4.461s
Mean frame read time: 0.0014sCV2, task True:
Main function time: 6.6833s
Mean frame read time: 0.023s

        因此,如果没有合成任务,我可以获得相同的阅读时间:,。但是对于合成任务:和,所以FFmpeg要快得多。美妙之处在于,我的神经网络应用程序得到了真正的加速,而不仅仅是综合测试,所以我决定分享结果。0.03230.03320.00140.023

        下图显示了 1 次迭代所需的时间:读取帧,使用 yolov8s 模型(在 CPU 上)处理它,并使用检测到的对象保存帧:

三 完整脚本

        以下是包含综合测试的完整脚本:

import platform
import subprocess
import time
from typing import Tuple
import cv2
import numpy as npclass VideoStreamFFmpeg:def __init__(self, src: int, fps: int, resolution: Tuple[int, int]):self.src = srcself.fps = fpsself.resolution = resolutionself.pipe = self._open_ffmpeg()self.frame_shape = (self.resolution[1], self.resolution[0], 3)self.frame_size = np.prod(self.frame_shape)self.wait_for_cam()def _open_ffmpeg(self):os_name = platform.system()if os_name == "Darwin":  # macOSinput_format = "avfoundation"video_device = f"{self.src}:none"elif os_name == "Linux":input_format = "v4l2"video_device = f"{self.src}"elif os_name == "Windows":input_format = "dshow"video_device = f"video={self.src}"else:raise ValueError("Unsupported OS")command = ['ffmpeg','-f', input_format,'-r', str(self.fps),'-video_size', f'{self.resolution[0]}x{self.resolution[1]}','-i', video_device,'-vcodec', 'mjpeg',  # Input codec set to mjpeg'-an', '-vcodec', 'rawvideo',  # Decode the MJPEG stream to raw video'-pix_fmt', 'bgr24','-vsync', '2','-f', 'image2pipe', '-']if os_name == "Linux":command.insert(2, "-input_format")command.insert(3, "mjpeg")return subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, bufsize=10**8)def read(self):raw_image = self.pipe.stdout.read(self.frame_size)if len(raw_image) != self.frame_size:return Noneimage = np.frombuffer(raw_image, dtype=np.uint8).reshape(self.frame_shape)return imagedef release(self):self.pipe.terminate()def wait_for_cam(self):for _ in range(30):frame = self.read()if frame is not None:return Truereturn Falseclass VideoStreamCV:def __init__(self, src: int, fps: int, resolution: Tuple[int, int]):self.src = srcself.fps = fpsself.resolution = resolutionself.cap = self._open_camera()self.wait_for_cam()def _open_camera(self):cap = cv2.VideoCapture(self.src)cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.resolution[0])cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.resolution[1])fourcc = cv2.VideoWriter_fourcc(*"MJPG")cap.set(cv2.CAP_PROP_FOURCC, fourcc)cap.set(cv2.CAP_PROP_FPS, self.fps)return capdef read(self):ret, frame = self.cap.read()if not ret:return Nonereturn framedef release(self):self.cap.release()def wait_for_cam(self):for _ in range(30):frame = self.read()if frame is not None:return Truereturn Falsedef timeit(func):def wrapper(*args, **kwargs):t0 = time.perf_counter()result = func(*args, **kwargs)t1 = time.perf_counter()print(f"Main function time: {round(t1-t0, 4)}s")return resultreturn wrapperdef computation_task():for _ in range(5000000):9999 * 9999@timeit
def run(cam: VideoStreamCV | VideoStreamFFmpeg, run_task: bool):timer = []for _ in range(100):t0 = time.perf_counter()cam.read()timer.append(time.perf_counter() - t0)if run_task:computation_task()cam.release()return round(np.mean(timer), 4)def main():fsp = 30resolution = (1920, 1080)for run_task in [False, True]:ff_cam = VideoStreamFFmpeg(src=0, fps=fsp, resolution=resolution)cv_cam = VideoStreamCV(src=0, fps=fsp, resolution=resolution)print(f"FFMPEG, task {run_task}:")print(f"Mean frame read time: {run(cam=ff_cam, run_task=run_task)}s\n")print(f"CV2, task {run_task}:")print(f"Mean frame read time: {run(cam=cv_cam, run_task=run_task)}s\n")if __name__ == "__main__":main()

注意:此脚本已在Apple的M1 Pro芯片上进行了测试。希望这是有帮助的!阿尔戈·萨基扬

 

相关文章:

使用 Python 的高效相机流

一、说明 让我们谈谈在Python中使用网络摄像头。我有一个简单的任务,从相机读取帧,并在每一帧上运行神经网络。对于一个特定的网络摄像头,我在设置目标 fps 时遇到了问题(正如我现在所理解的——因为相机可以用 mjpeg 格式运行 30…...

pycharm使用

在使用pycharm时,有时一个回车或者一个tab键,缩进的长度不符合预期可以调整设置tab键缩进的长度: 平时工作中,不同的人在编辑代码缩进的时候,有的人喜欢按四个或者六个空格,有的人喜欢按tab键,而…...

C++项目实战——基于多设计模式下的同步异步日志系统-②-相关技术补充(不定参函数)

文章目录 专栏导读不定参函数C风格不定参函数不定参宏函数 专栏导读 🌸作者简介:花想云 ,在读本科生一枚,C/C领域新星创作者,新星计划导师,阿里云专家博主,CSDN内容合伙人…致力于 C/C、Linux 学…...

iOS开发Swift-10-位置授权, cocoapods,API,天气获取,城市获取-和风天气App首页代码

1.获取用户当前所在的位置 在infi中点击加号,选择权限:当用户使用app的时候获取位置权限. 填写使用位置权限的目的. 2.获取用户的经纬度. ViewController: import UIKit import CoreLocationclass ViewController: UIViewController, CLLocationManagerDelegate { //遵循CLL…...

CNN(七):ResNeXt-50算法的思考

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊|接辅导、项目定制 在进行ResNeXt-50实战练习时,我也跟其他学员一样有这个疑惑,如下图所示: 反复查看代码,仍然有…...

【人月神话】深入了解软件工程和项目管理

文章目录 👨‍⚖️《人月神话》的主要观点👨‍🏫《人月神话》的主要内容👨‍💻作者介绍 🌸🌸🌸🌷🌷🌷💐💐💐&a…...

52、基于函数式方式开发 Spring WebFlux 应用

★ Spring WebFlux的两种开发方式 1. 采用类似于Spring MVC的注解的方式来开发。此时开发时感觉Spring MVC差异不大,但底层依然是反应式API。2. 使用函数式编程来开发★ 使用函数式方式开发Web Flux 使用函数式开发WebFlux时需要开发两个组件: ▲ Han…...

MySQL的用户管理

1、MySQL的用户管理 (1)创建用户 create user zhang3 identified by 123123;表示创建名称为zhang3的用户,密码设为123123。 (2)了解user表 1)查看用户 select host,user,authentication_string,select…...

LeetCode //C - 114. Flatten Binary Tree to Linked List

114. Flatten Binary Tree to Linked List Given the root of a binary tree, flatten the tree into a “linked list”: The “linked list” should use the same TreeNode class where the right child pointer points to the next node in the list and the left child …...

利用transform和border 创造简易图标,以适应uniapp中多字体大小情况下的符号问题

heml: <text class"icon-check"></text> css: .icon-check {border: 2px solid black;border-left: 0;border-top: 0;height: 12px;width: 6px;transform-origin: center;transform: rotate(45deg);} 实际上就是声明一个带边框的div 将其中相邻的两边去…...

C/C++指针函数与函数指针

一、指针函数 指针函数&#xff1a;本质为一个函数&#xff0c;返回值为指针指针函数&#xff1a;如果一个函数的返回值是指针类型&#xff0c;则称为指针函数用指针作为函数的返回值的好处&#xff1a;可以从被调函数向主函数返回大量的数据&#xff0c;常用于返回结构体指针。…...

30天入门Python(基础篇)——第1天:为什么选择Python

文章目录 专栏导读作者有话说为什么学习Python原因1(总体得说)原因2(就业说) Python的由来(来自百度百科)Python的版本 专栏导读 &#x1f525;&#x1f525;本文已收录于《30天学习Python从入门到精通》 &#x1f251;&#x1f251;本专栏专门针对于零基础和需要重新复习巩固…...

智慧公厕破解公共厕所管理的“孤岛现象”

在现代社会中&#xff0c;公共厕所是城市管理中的一项重要任务。然而&#xff0c;经常会出现公厕管理的“孤岛现象”&#xff0c;即每个公厕都是独立运作&#xff0c;缺乏统一的管理和监控机制。针对这一问题&#xff0c;智慧公厕的出现为解决公共厕所管理难题带来了新的方案。…...

excel中删除重复项

数据如图&#xff1a; 要删除姓名这一列的重复项&#xff0c;操作&#xff1a; (1)选中姓名这一列(2)点击“数据”(3)点击“删除重复项" 这是excel会自动检测出还有别的关联列 直接默认&#xff0c;点击删除重复项...弹出下面的界面 因为我们只要删除“姓名”列的重复值&…...

2023-9-8 求组合数(三)

题目链接&#xff1a;求组合数 III #include <iostream> #include <algorithm>using namespace std;typedef long long LL;int p;int qmi(int a, int k) {int res 1;while(k){if(k & 1) res (LL) res * a % p;k >> 1;a (LL) a * a % p;}return res; }…...

01 - Apache Seatunnel 源码调试

1.下载源码 https://github.com/apache/seatunnel.git2.编译 mvn clean package -pl seatunnel-dist -am -Dmaven.test.skiptrue3. 下载驱动 sh bin/install-plugin.sh 4.测试类 选择 seatunnel-examples ├── seatunnel-engine-examples ├── seatunnel-flink-connecto…...

UVA-12325 宝箱 题解答案代码 算法竞赛入门经典第二版

GitHub - jzplp/aoapc-UVA-Answer: 算法竞赛入门经典 例题和习题答案 刘汝佳 第二版 根据书上的方法来做&#xff0c;是比较简单的题目。关键在于知道等体积时的枚举法。不过数据大小可能很大&#xff0c;虽然输入可以用int处理&#xff0c;但是 体积*价值 后&#xff0c;需要l…...

烟感报警器单片机方案开发,解决方案

烟感报警器也叫做烟雾报警器。烟感报警器适用于火灾发生时有大量烟雾&#xff0c;而正常情况下无烟的场所。例如写字楼、医院、学校、博物馆等场所。烟感报警器一般安装于所需要保护或探测区域的天花板上&#xff0c;因火灾中烟雾比空气轻&#xff0c;更容易向上飘散&#xff0…...

【JavaEE】_CSS引入方式与选择器

目录 1. 基本语法格式 2. 引入方式 2.1 内部样式 2.2 内联样式 2.3 外部样式 3. 基础选择器 3.1 标签选择器 3.2 类选择器 3.3 ID选择器 4. 复合选择器 4.1 后代选择器 4.2 子选择器 4.3 并集选择器 4.4 伪类选择器 1. 基本语法格式 选择器若干属性声明 2. 引入…...

【8】shader写入类中

上一篇将 vao vbo写入类中进行封装&#xff0c;本篇将shader进行封装。 Shader shader("res/shaders/Basic.shader");shader.Bind(); shader.SetUniform4f("u_Color", 0.2f, 0.3f, 0.8f, 1.0f);shader.h #pragma once#include <string> #include &l…...

Servlet注册迭代史

Servlet注册迭代史 1、第一代&#xff0c;xml注册 <web-app><display-name>Archetype Created Web Application</display-name><!-- 定义一个Servlet --><servlet><!-- Servlet的名称&#xff0c;用于在配置中引用 --><servlet-name&…...

合创汽车V09纵享商务丝滑?预售价32万元起,正式宣布大规模生产

合创汽车正式宣布&#xff0c;旗下新款车型V09已于9月10日开始大规模生产&#xff0c;并预计将于10月13日正式上市。V09作为中大型纯电动MPV的代表之一&#xff0c;备受瞩目。该车型是广汽新能源和蔚来汽车共同成立的广汽蔚来改为广汽集团和珠江投管共同投资的高端品牌——合创…...

49. 视频热度问题

文章目录 实现一题目来源 谨以此笔记献给浪费掉的两个小时。 此题存在多处疑点和表达错误的地方&#xff0c;如果你看到了这篇文章&#xff0c;劝你跳过该题。 该题对提升HSQL编写能力以及思维逻辑能力毫无帮助。 实现一 with info as (-- 将数据与 video_info 关联&#x…...

【力扣练习题】加一

package sim;import java.math.BigDecimal; import java.util.Arrays;public class Add1 {/*给定一个由 整数 组成的 非空 数组所表示的非负整数&#xff0c;在该数的基础上加一。最高位数字存放在数组的首位&#xff0c; 数组中每个元素只存储单个数字。你可以假设除了整数 0 …...

Linux--I/O复用之select

目录 一&#xff1a;概念 二&#xff1a;使用 三&#xff1a;参数介绍&#xff1a; 1.ndfs&#xff1a; 2.fd_set类型&#xff1a; 3.readfds&#xff1a; 4.writefds&#xff1a; 5.exceptfds&#xff1a; 6.timeout&#xff1a; 7.返回值&#xff1a; 四&#xff1…...

数据结构大作业 成绩分析c语言程序设计

界面加载 界面展示 成绩输入 求平均成绩 升序排列 降序排列 名字排序 按名字搜索 按ID搜索 每门课成绩分析 成绩单展示 -...

Consul学习笔记之-初识Consul

文章目录 1. What is consul?2. Consul能干什么3. Consul的架构3.1 概念 4. Consul VS Eureka4.1 CAP4.2 对比 1. What is consul? 根据官方文档的定义&#xff1a; HashiCorp Consul is a service networking solution that enables teams to manage secure network connec…...

python实现读取并显示图片的两种方法

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 在 python 中除了用 opencv&#xff0c;也可以用 matplotlib 和 PIL 这两个库操作图片。 本人偏爱 matpoltlib&#xff0c;因为它的语法更像 matlab。 &#x1f447; &#x1f447; &#x1f447; 更多精彩机密、教程&…...

Spring Boot 整合 MyBatis

&#x1f648;作者简介&#xff1a;练习时长两年半的Java up主 &#x1f649;个人主页&#xff1a;程序员老茶 &#x1f64a; ps:点赞&#x1f44d;是免费的&#xff0c;却可以让写博客的作者开兴好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全栈&#xff0c;…...

2023高教社杯数学建模A题B题C题D题E题思路模型 国赛建模思路分享

文章目录 0 赛题思路1 竞赛信息2 竞赛时间3 建模常见问题类型3.1 分类问题3.2 优化问题3.3 预测问题3.4 评价问题 4 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 竞赛信息 全国大学生数学建模…...

手机交互网站/福建百度推广开户

我正在运行一个大的PHP脚本,它可能需要一整天才能完成它的工作,这个脚本从MySQL数据库中获取数据并将其与curl一起使用来测试东西……它用大约40,000条记录来实现它.因此,为了使它在后台运行,只要它需要,我使用终端执行它..在PHP脚本本身它有这些设置,以确保它运行尽可能长,直到…...

龙之向导外贸网站怎么样/贺州seo

最近有同事需求&#xff0c;作的专题需要一个投票功能&#xff0c;商讨后看了下社区的投票代码&#xff0c;感慨良多&#xff0c;决定用redis做一个单纯的投票数据处理&#xff0c;以方便后续对社区投票的修改 所以功能就很简单&#xff0c;不考虑选项&#xff0c;内容等存储&a…...

有专业做淘宝网站的美工吗/高端网站设计定制

Path类 提供静态方法&#xff0c;完成路径字符串的常见操作 例如在C盘的文件夹a下的b文件夹下的1.mp3文件 C:\a\b\1.mp3 一.获取信息的方法&#xff1a; 1.获得路径&#xff1a;Path.GetDirectoryName(路径); 结果&#xff1a;C:\a\b 获得文件名&#xff1a;Path.GetFileName(路…...

网站建设经验典型/广东深圳疫情最新消息

2019独角兽企业重金招聘Python工程师标准>>> http://wangheng.org/raspberry-dht11-yeekink.html 转载于:https://my.oschina.net/u/2477353/blog/633981...

wordpress优化搜索/seo职业发展

问题描述网络拓扑如下&#xff1a;两台S7706作为核心交换机&#xff0c;下挂一台S5700作为接入交换机。S5700下面还挂了一台其他厂家的交换机。客户端的网关在S7706-1上面&#xff08;两台S7706运行VRRP协议&#xff0c;S7706-1为主&#xff09;。S5700和两台S7706都运行Smart …...

网站漂浮图怎么做/网络优化报告

简介Java服务大多是跑在tomcat里&#xff0c;但是众所周知tomcat的并发性能没有优势(tomcat8及以上的版本可能有所改善)&#xff0c;所以为了更好的适应高并发的应用场景&#xff0c;我们可以使用tomcatnginx实现动静分离&#xff0c;在处理静态请求的时候&#xff0c;就直接给…...