MATLAB中fillmissing函数用法
目录
语法
说明
示例
包含 NaN 值的向量
由 NaN 值组成的矩阵
插入缺失数据
使用移动中位数方法
使用自定义填充方法
包含缺失端点的矩阵
包含多个数据类型的表
fillmissing函数的功能是填充缺失的条目。
语法
F = fillmissing(A,'constant',v)
F = fillmissing(A,method)
F = fillmissing(A,movmethod,window)
F = fillmissing(A,'knn')
F = fillmissing(A,'knn',k)
F = fillmissing(A,fillfun,gapwindow)
F = fillmissing(___,dim)
F = fillmissing(___,Name,Value)
[F,TF] = fillmissing(___)
说明
F = fillmissing(A,'constant',v) 使用常量值 v 填充缺失的数组或表条目。如果 A 是矩阵或多维数组,则 v 可以是标量或向量。如果 v 是向量,则每个元素指定 A 的对应列中的填充值。如果 A 是表或时间表,则 v 也可以是元胞数组,其元素包含每个表变量的填充值。
缺失值的定义取决于 A
的数据类型:
-
NaN - double、single、duration 和 calendarDuration
-
NaT — datetime
-
<missing> — string
-
<undefined> — categorical
-
{''} - 字符向量的 cell
如果 A
是表,则每个变量的数据类型定义该变量的缺失值。
F = fillmissing(A,method) 使用 method 指定的方法填充缺失的条目。例如,fillmissing(A,'previous') 对 A 中的缺失条目使用上一个非缺失条目进行填充。
F = fillmissing(A,movmethod,window) 使用窗长度为 window 的移动窗均值或中位数填充缺失条目。例如,fillmissing(A,'movmean',5) 使用窗长度为 5 的移动均值填充缺失数据。
F = fillmissing(A,'knn') 用最近邻行中的对应值填充缺失条目,这些值是根据行之间的成对欧几里德距离计算的。
F = fillmissing(A,'knn',k) 用 k 最近邻行中对应值的均值填充缺失条目,该均值是根据行之间的成对欧几里德距离计算的。例如,fillmissing(A,'knn',5) 用五个最近邻行中对应值的均值填充 A 中的缺失条目。
F = fillmissing(A,fillfun,gapwindow) 使用由函数句柄 fillfun 指定的自定义方法填充缺失条目的空缺,并在每个空缺周围设置固定窗,从该窗计算填充值。fillfun 必须具有输入参数 xs、ts 和 tq,它们是向量,分别包含长度为 gapwindow 的采样数据 xs、长度为 gapwindow 的采样数据位置 ts 和缺失数据位置 tq。ts 和 tq 中的位置是采样点向量的子集。
F = fillmissing(___,dim) 支持上述语法中的任何输入参数组合,且可指定 A 中要进行运算的维度。默认情况下,fillmissing 沿其大小不为 1 的第一个维度进行运算。例如,如果 A 是矩阵,则 fillmissing(A,2) 跨 A 的各列进行运算,逐行填充缺失的数据。
F = fillmissing(___,Name,Value) 使用一个或多个名称-值参数指定用于填充缺失值的其他参数。例如,如果 t 是时间值向量,则 fillmissing(A,'linear','SamplePoints',t) 会基于 t 中的时间值对 A 中的数据进行插值。
[F,TF] = fillmissing(___) 还返回逻辑数组 TF,该数组指示 F 中先前缺失现已填充的条目的位置。
示例
包含 NaN
值的向量
创建包含 NaN 值的向量,并使用前一个非缺失值替换每个 NaN。
A = [1 3 NaN 4 NaN NaN 5];
F = fillmissing(A,'previous')F = 1×71 3 3 4 4 4 5
由 NaN
值组成的矩阵
创建一个 2×2 矩阵,每列有一个 NaN 值。在第一列中用 100 填充 NaN,在第二列中用 1000 填充。
A = [1 NaN; NaN 2]
A = 2×21 NaNNaN 2F = fillmissing(A,'constant',[100 1000])
F = 2×21 1000100 2
插入缺失数据
使用插值来替换非均匀采样的数据中的 NaN 值。定义非均匀采样点向量,并计算这些点上的正弦函数。
x = [-4*pi:0.1:0, 0.1:0.2:4*pi];
A = sin(x);
将 NaN 值插入 A 中。
A(A < 0.75 & A > 0.5) = NaN;
使用线性插值填充缺失数据,并返回填充的向量 F 和逻辑向量 TF。TF 项中的值 1 (true) 对应于 F 中的填充值。
[F,TF] = fillmissing(A,'linear','SamplePoints',x);
绘制原始数据和填充的数据。
scatter(x,A)
hold on
scatter(x(TF),F(TF))
legend('Original Data','Filled Data')
如图所示:
使用移动中位数方法
使用移动中位数填充缺失的数值数据。创建样本点向量 x 和包含缺失值的数据向量 A。
x = linspace(0,10,200);
A = sin(x) + 0.5*(rand(size(x))-0.5);
A([1:10 randi([1 length(x)],1,50)]) = NaN;
使用窗长度为 10 的移动中位数替换 A 中的 NaN 值,并绘制原始数据和填充的数据。
F = fillmissing(A,'movmedian',10);
plot(x,F,'.-')
hold on
plot(x,A,'.-')
legend('Original Data','Filled Data')
如图所示:
使用自定义填充方法
定义一个自定义函数,用上一个非缺失值填充 NaN 值。定义采样点向量 t 和包含 NaN 值的对应数据向量 A。绘制数据图。
t = 10:10:100;
A = [0.1 0.2 0.3 NaN NaN 0.6 0.7 NaN 0.9 1];
scatter(t,A)
如图所示:
使用局部函数 forwardfill(在示例末尾定义)用上一个非缺失值填充缺失空缺。函数句柄输入包括:
-
xs - 用于填充的数据值
-
ts - 用于填充的值相对于采样点的位置
-
tq - 缺失值相对于采样点的位置
-
n - 要填充的空缺中的值的数目
n = 2;
gapwindow = [10 0];[F,TF] = fillmissing(A,@(xs,ts,tq) forwardfill(xs,ts,tq,n),gapwindow,'SamplePoints',t);
空缺窗值 [10 0] 指示 fillmissing 考虑缺失值空缺之前的一个数据点,不考虑空缺之后的任何数据点,因为上一个非缺失值位于空缺之前 10 个单位。对于第一个空缺,由 fillmissing 确定的函数句柄输入值为:
-
xs = 0.3
-
ts = 30
-
tq = [40 50]
第二个空缺的函数句柄输入值为:
-
xs = 0.7
-
ts = 70
-
tq = 80
绘制原始数据和填充的数据。
scatter(t,A)
hold on
scatter(t(TF),F(TF))
如图所示:
function y = forwardfill(xs,ts,tq,n)
% Fill n values in the missing gap using the previous nonmissing value
y = NaN(1,numel(tq));
y(1:min(numel(tq),n)) = xs;
end
包含缺失端点的矩阵
创建包含缺失条目的矩阵并使用线性插值填充各列(第二个维度),一次一行。对于每行,使用该行中距离最近的非缺失值填充前导和尾随缺失值。
A = [NaN NaN 5 3 NaN 5 7 NaN 9 NaN;8 9 NaN 1 4 5 NaN 5 NaN 5;NaN 4 9 8 7 2 4 1 1 NaN]
A = 3×10NaN NaN 5 3 NaN 5 7 NaN 9 NaN8 9 NaN 1 4 5 NaN 5 NaN 5NaN 4 9 8 7 2 4 1 1 NaNF = fillmissing(A,'linear',2,'EndValues','nearest')
F = 3×105 5 5 3 4 5 7 8 9 98 9 5 1 4 5 5 5 5 54 4 9 8 7 2 4 1 1 1
包含多个数据类型的表
使用不同数据类型填充表变量的缺失值。创建表,其变量包括 categorical、double 和 char 数据类型。
A = table(categorical({'Sunny'; 'Cloudy'; ''}),[66; NaN; 54],{''; 'N'; 'Y'},[37; 39; NaN],...'VariableNames',{'Description' 'Temperature' 'Rain' 'Humidity'})A=3×4 tableDescription Temperature Rain Humidity___________ ___________ __________ ________Sunny 66 {0x0 char} 37 Cloudy NaN {'N' } 39 <undefined> 54 {'Y' } NaN
用上一个条目的值替换所有缺失的条目。由于 Rain 变量中不存在前一个元素,缺失的字符向量将不会被替换。
F = fillmissing(A,'previous')
F=3×4 tableDescription Temperature Rain Humidity___________ ___________ __________ ________Sunny 66 {0x0 char} 37 Cloudy 66 {'N' } 39 Cloudy 54 {'Y' } 39
将 A 中 Temperature 和 Humidity 变量的 NaN 值替换为 0。
F = fillmissing(A,'constant',0,'DataVariables',{'Temperature','Humidity'})
F=3×4 tableDescription Temperature Rain Humidity___________ ___________ __________ ________Sunny 66 {0x0 char} 37 Cloudy 0 {'N' } 39 <undefined> 54 {'Y' } 0
参数说明:
A-输入数据,指定为向量、矩阵、多维数组、字符向量元胞数组、表或时间表。
-
如果 A 为时间表,则仅填充表值。如果关联的行时间向量包含 NaT 或 NaN 值,则 fillmissing 会产生错误。行时间必须是唯一的并按升序列出。
-
如果 A 是元胞数组或包含元胞数组变量的表,则 fillmissing 仅在元胞数组包含字符向量时填充缺失元素。
v-填充常量,指定为标量、向量或元胞数组。
-
如果 A 是矩阵或多维数组,则 v 可以是向量,表示每个运算维度的一个不同填充值。v 的长度必须与运算维度的长度相匹配。
-
如果 A 是表或时间表,则 v 可以是填充值的元胞数组,表示每个变量的一个不同填充值。元胞数组中的元素数必须与表中的变量数目相匹配。
method-填充方法,指定为下列值之一:
方法 | 描述 |
---|---|
'previous' | 上一个非缺失值 |
'next' | 下一个非缺失值 |
'nearest' | 距离最近的非缺失值 |
'linear' | 相邻非缺失值的线性插值(仅限数值、duration 和 datetime 数据类型) |
'spline' | 分段三次样条插值(仅限数值、duration 和 datetime 数据类型) |
'pchip' | 保形分段三次样条插值(仅限数值、duration 和 datetime 数据类型) |
'makima' | 修正 Akima 三次 Hermite 插值(仅限数值、duration 和 datetime 数据类型) |
movmethod
— 移窗法
填充缺失数据的移动方法,指定为下列值之一:
方法 | 描述 |
---|---|
'movmean' | 窗长度为 window 的移动均值(仅限数值数据类型) |
'movmedian' | 窗长度为 window 的移动中位数(仅限数值数据类型) |
window
— 窗长度
移动方法的窗长度,指定为正整数标量、由正整数组成的二元素向量、正持续时间标量或由正持续时间组成的二元素向量。窗是相对于采样点定义的。
如果 window 是正整数标量,则窗以当前元素为中心并且包含 window-1 个相邻元素。如果 window 是偶数,则窗口以当前元素和上一个元素为中心。
如果 window 是由正整数组成的二元素向量 [b f],则窗口包含当前元素、其之前的 b 个元素和之后的 f 个元素。
如果 A 是时间表或 SamplePoints 指定为 datetime 或 duration 向量,则窗口必须为 duration 类型。
k
— 最近邻的数量,用 'knn' 方法计算平均值的最近邻的数量,指定为正整数标量。
相关文章:

MATLAB中fillmissing函数用法
目录 语法 说明 示例 包含 NaN 值的向量 由 NaN 值组成的矩阵 插入缺失数据 使用移动中位数方法 使用自定义填充方法 包含缺失端点的矩阵 包含多个数据类型的表 fillmissing函数的功能是填充缺失的条目。 语法 F fillmissing(A,constant,v) F fillmissing(A,meth…...

电脑同时连接有线和无线网络怎么设置网络的优先级
电脑同时连接有线和无线网络怎么设置网络的优先级: 我们知道在 笔记本电脑系统 中,可以通过有线或无线网络进行联网。如果电脑在有线网络和无线网络同时存在的情况,应该怎么设置有线网络优先连接呢?对此我们提供下面的方法可以让电脑在有Wi…...

el-form表单动态校验(场景: 输入框根据单选项来动态校验表单 没有选中的选项就不用校验)
el-form表单动态校验 el-form常规校验方式: // 结构部分 <el-form ref"form" :model"form" :rules"rules"><el-form-item label"活动名称: " prop"name" required><el-input v-model"form.name" /…...
Java 数据结构与算法应该如何学习?
学习数据结构是计算机科学和软件工程领域中的重要基础知识之一。掌握数据结构对于编写高效、可扩展和可维护的代码至关重要。 1、掌握基本概念 首先,你需要掌握数据结构的基本概念。了解不同类型的数据结构,如数组、链表、栈、队列、树、图等ÿ…...

力扣(LeetCode)算法_C++——有效的数独
请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图) …...

制造企业如何优化物料控制?
导 读 ( 文/ 2127 ) 物料控制是指对制造过程中所涉及的物料流动和库存进行有效管理和控制的过程。它包括物料需求计划、供应商管理、物料采购、物料接收和入库、物料库存管理以及物料发放和使用等关键环节。通过精确的物料需求计划和库存管理,物料控制可以确保物料供…...

《Go语言在微服务中的崛起:为什么Go是下一个后端之星?》
🌷🍁 博主猫头虎🐅🐾 带您进入 Golang 语言的新世界✨✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文并茂…...

因为axios请求后端,接收不到token的问引出的问题
vue axios请求后端接受不到token的问题。 相关概念 什么是跨域? 跨域指的是在浏览器环境下,当发起请求的域(或者网站)与请求的资源所在的域之间存在协议、主机或端口中的任何一个条件不同的情况。换句话说,只要协议、…...

Stable Diffusion 免费升级 SDXL 1.0,哪些新特性值得关注?体验如何?5 分钟带你体验!
一、引言 7 月 26 日,Stability AI 发布了 SDXL 1.0,号称目前为止,最厉害的开放式图像生成大模型。 它到底有没有网上说的那么炸裂?真的已经实现了像 midjourney 一样 靠嘴出图 的功能吗?相对于之前的版本,…...

【广州华锐互动】煤矿设备AR远程巡检系统实现对井下作业的远程监控和管理
煤矿井下作业环境复杂,安全隐患较多。传统的巡检方式存在诸多弊端,如巡检人员难以全面了解井下情况,巡检效率低下,安全隐患难以及时发现和整改等。为了解决这些问题,提高煤矿安全生产水平,越来越多的企业开…...
C语言与Java语言传输数据 需要转位
在Java语言中,可以通过将整数反转并修改字节顺序来实现低位转高位的转换。下面是一个示例代码,可以将一个整数从低位转高位: public static int toHH(int n) {byte[] bytes ByteBuffer.allocate(4).putInt(n).array();for (int i 0; i <…...
Framework开发——系统默认语言修改
Android 系统原版默认的语言为英文,但是对于中国大陆 Android 产品厂商来说,我们定制系统可能需要用户一开机就是简体中文。所以把 Android 系统出厂设置为简体中文对于 Android 系统产品化非常重要,我们可以通过修改系统属性来达到默认语言的作用。本文主要是在 Android 11…...

浅谈原型链
一.在掌握原型链之前首先要了解这三点 1.每个函数都有prototype这个属性我们称为原型对象 2.每个对象都有__proto__这个属性 3.对象的__proto__可以访问原型对象上的方法和变量,如果访问不了,就会向上进行查找,直到找不到为止,会出现报错的情况l。 二.例子 1.代码: let arr …...

合宙Air724UG LuatOS-Air LVGL API控件-截屏(Screenshots)
截屏(Screenshots) 分 享导出pdf 截屏功能,core版本号要>3211 示例代码 -- 创建图片控件img lvgl.img_create(lvgl.scr_act(), nil)-- 设置图片显示的图像lvgl.img_set_src(img, "/lua/test.png")-- 图片居中lvgl.obj_align(…...

【系统设计系列】 负载均衡和反向代理
系统设计系列初衷 System Design Primer: 英文文档 GitHub - donnemartin/system-design-primer: Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards. 中文版: https://github.com/donnemart…...
Halcon实现3维点云平面拟合
Halcon实现3维点云平面拟合 function main()WindowHandle open_window()ObjectModel3D load_3D_model("1.om3")ObjectModel3DSelected remove_noise(ObjectModel3D)[X, Y, Z] extract_coordinates(ObjectModel3DSelected)[NX, NY, NZ, C] fit_plane(X, Y, Z)vi…...
安全学习DAY23_CookieSessionToken
文章目录 Cookie和Session的区别Token的作用 Cookie和Session的区别 Cookie和Session都是用来在Web应用程序中跟踪用户状态的机制 1、存储位置不同: Cookie是存储在客户端(浏览器)上的,而Session是存储在服务器端的。 2、安全…...
C++ map clear内存泄漏问题
map值存的是指针 map自带的clear()函数会清空map里存储的所有内容,但如果map值存储的是指针,则里面的值不会被清空,会造成内存泄漏,所以值为指针的map必须用迭代器清空。 使用erase迭代删除 迭代器删除值为指针的map,…...

【鲁棒电力系统状态估计】基于投影统计的电力系统状态估计的鲁棒GM估计器(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
怎么判断一个ip地址是否正确
在网络通信和计算机领域中,IP地址(Internet Protocol Address)是一个关键的概念。但是,很多人对于如何判断一个IP地址是否正确感到困惑。本文将深入探讨这个问题,并提供一些实用的方法来验证IP地址的正确性。 IP地址是…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...