Halcon实现3维点云平面拟合
Halcon实现3维点云平面拟合
function main()WindowHandle = open_window()ObjectModel3D = load_3D_model("1.om3")ObjectModel3DSelected = remove_noise(ObjectModel3D)[X, Y, Z] = extract_coordinates(ObjectModel3DSelected)[NX, NY, NZ, C] = fit_plane(X, Y, Z)visualize(ObjectModel3DSelected, NX, NY, NZ, C, WindowHandle)
打开并配置窗口
function open_window()dev_open_window(0, 0, 512, 512, 'black', WindowHandle)set_display_font(WindowHandle, 14, 'mono', 'true', 'false')return WindowHandle
加载3D模型
function load_3D_model(filename)read_object_model_3d(filename, 'm', [], [], ObjectModel3D, Status)check_status(Status)return ObjectModel3D
去除3D模型中的噪点
function remove_noise(ObjectModel3D)connection_object_model_3d(ObjectModel3D, 'distance_3d', 1, ObjectModel3DConnected)select_object_model_3d(ObjectModel3DConnected, 'num_points', 'and', 1000, 99999, ObjectModel3DSelected)return ObjectModel3DSelected
提取3D模型的坐标信息
function extract_coordinates(ObjectModel3D)get_object_model_3d_params(ObjectModel3D, 'point_coord_x', X)get_object_model_3d_params(ObjectModel3D, 'point_coord_y', Y)get_object_model_3d_params(ObjectModel3D, 'point_coord_z', Z)return [X, Y, Z]
拟合平面
function fit_plane(X, Y, Z)
# 计算点的重心
XM = mean(X)
YM = mean(Y)
ZM = mean(Z)
# 计算对称矩阵M(A)
DX = X - XM
DY = Y - YM
DZ = Z - ZM
MA11 = sum(DX * DX)
MA22 = sum(DY * DY)
MA33 = sum(DZ * DZ)
MA12 = sum(DX * DY)
MA13 = sum(DX * DZ)
MA23 = sum(DY * DZ)create_matrix(3, 3, [MA11,MA12,MA13,MA12,MA22,MA23,MA13,MA23,MA33], MatrixID)# 求取特征值和特征向量
eigenvalues_symmetric_matrix(MatrixID, 'true', EigenvaluesID, EigenvectorsID)# 获取法向量
get_value_matrix(EigenvectorsID, 0, 0, NX)
get_value_matrix(EigenvectorsID, 1, 0, NY)
get_value_matrix(EigenvectorsID, 2, 0, NZ)# 计算平面的常数C
C = NX * XM + NY * YM + NZ * ZM
if C < 0.0NX = -NXNY = -NYNZ = -NZC = -C
endif
return [NX, NY, NZ, C]
可视化函数
# 可视化函数
function visualize(ObjectModel3DSelected, NX, NY, NZ, C, WindowHandle)# 设置可视化参数VisualizationPlaneSize = 40GenParamName = ['lut','color_attrib','light_position','alpha']GenParamValue = ['color1','coord_z','0.0 0.0 -0.3 1.0', 0.9]# 获取3D对象的主要轴(可选)moments_object_model_3d(ObjectModel3DSelected, 'principal_axes', Pose)# 生成拟合平面的3D对象模型gen_plane_object_model_3d(Pose, [-1,-1,1,1] * VisualizationPlaneSize, [-1,1,1,-1] * VisualizationPlaneSize, IntersectionPlane)# 设置可视化窗口的角度和位置create_pose(-65, -40, 2400, 150, 0, -60, 'Rp+T', 'gba', 'point', PoseIn)# 设置标题和操作说明Title = '3D object & fitplane'Instructions[0] = 'Rotate: Left button'Instructions[1] = 'Zoom: Shift + left button'Instructions[2] = 'Move: Ctrl + left button'# 在窗口中可视化3D对象和拟合平面visualize_object_model_3d(WindowHandle, [ObjectModel3DSelected, IntersectionPlane], [], PoseIn, GenParamName, GenParamValue, Title, [], Instructions, Pose)
end function
状态检查
function check_status(Status)if Status != "OK"# Handle the error here
相关文章:
Halcon实现3维点云平面拟合
Halcon实现3维点云平面拟合 function main()WindowHandle open_window()ObjectModel3D load_3D_model("1.om3")ObjectModel3DSelected remove_noise(ObjectModel3D)[X, Y, Z] extract_coordinates(ObjectModel3DSelected)[NX, NY, NZ, C] fit_plane(X, Y, Z)vi…...
安全学习DAY23_CookieSessionToken
文章目录 Cookie和Session的区别Token的作用 Cookie和Session的区别 Cookie和Session都是用来在Web应用程序中跟踪用户状态的机制 1、存储位置不同: Cookie是存储在客户端(浏览器)上的,而Session是存储在服务器端的。 2、安全…...
C++ map clear内存泄漏问题
map值存的是指针 map自带的clear()函数会清空map里存储的所有内容,但如果map值存储的是指针,则里面的值不会被清空,会造成内存泄漏,所以值为指针的map必须用迭代器清空。 使用erase迭代删除 迭代器删除值为指针的map,…...

【鲁棒电力系统状态估计】基于投影统计的电力系统状态估计的鲁棒GM估计器(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
怎么判断一个ip地址是否正确
在网络通信和计算机领域中,IP地址(Internet Protocol Address)是一个关键的概念。但是,很多人对于如何判断一个IP地址是否正确感到困惑。本文将深入探讨这个问题,并提供一些实用的方法来验证IP地址的正确性。 IP地址是…...
Git:git clone 之 --recursive 选项
在git的repo中,可能会有子项目的代码,也就是"git中的git" --recursive是递归的意思,不仅会git clone当前项目中的代码,也会clone项目中子项目的代码。 我们有时在git clone的时候漏掉 --recursive选项,导致编…...

并查集介绍和常用模板
并查集介绍和常用模板 前言: 并查集(Union-find set 也叫Disjoint Sets)是图论里面一种用来判断节点之间是否连通的数据结构,学会使用它可以处理一些跟节点连通性的问题。它有两个很重要的方法: Find(x):…...

解决deepspeed框架的bug:不保存调度器状态,模型训练重启时学习率从头开始
deepspeed存在一个bug,即在训练时不保存调度器状态,因此如果训练中断后再重新开始训练,调度器还是会从头开始而不是接着上一个checkpoint的调度器状态来训练。这个bug在deepspeed的github中也有其他人提出:https://github.com/mic…...

Linux ipc通信(消息对列)
前言:消息队列也是linux开发ipc机制中较为重要的一个进程间通信机制。 1.系统创建或获取消息对列 int msgget(key_t key, int mode); 创建消息队列,或者获取消息队列。 参数: key - 使用ftok()获取到的key mode - IPC_CREAT|0666 返回&…...

【计算机网络】 ARP协议和DNS协议
文章目录 数据包在传输过程中的变化过程单播组播和广播ARP协议ARP代理免费ARP路由数据转发过程DNS协议 数据包在传输过程中的变化过程 在说ARP和DNS之前,我们需要知道数据包在传输过程的变化过程 从图片中可以看到,发送方的原数据最开始是在应用层&…...

【逐步剖C++】-第一章-C++类和对象(上)
前言:本文主要介绍有关C入门需掌握的基础知识,包括但不限于以下几个方面,这里是文章导图: 本文较长,内容较多,大家可以根据需求跳转到自己感兴趣的部分,希望能对读者有一些帮助 那么本文也主要…...

索尼 toio™ 应用创意开发征文|探索创新的玩乐世界——索尼 toio™
导语: 在技术的不断进步和发展中,玩具也逐渐融入了智能化的潮流。索尼 toio™作为一款前沿的智能玩具,给孩子和成人带来了全新的游戏体验。本文将介绍索尼 toio™的特点、功能和应用场景,让读者了解这个令人兴奋的创新产品。 1. 了…...

企业架构LNMP学习笔记23
1、隐藏版本号: Nginx对外提供服务,为了避免被针对某个版本的漏洞进行攻击。经常做法是隐藏掉软件的版本信息,提供一定的安全性。 server_tokens off; https和CA: 1)基于SSL CA证书的公私钥的安全性。 CA是需要生成…...

第六章 图 五、图的深度优先遍历(DFS算法)
目录 一、定义 深度优先遍历通常用于解决以下问题: 深度优先遍历算法具有以下优点: 深度优先遍历算法的一个缺点是: 二、代码 空间复杂度: 时间复杂度: 邻接矩阵存储: 邻接表存储: 三、…...
React 中的 useLayoutEffect 钩子函数
useLayoutEffect钩子函数的作用跟useEffect钩子函数的作用一样,它们的不同主要是在于: 1、useEffect钩子函数是异步的,因为此函数在执行的时候是先计算出所有的 Dom 节点的改变后再将对应的 Dom 节点渲染到屏幕上,然而在 useEffe…...

upload-labs1-21关文件上传通关手册
upload-labs文件上传漏洞靶场 目录 upload-labs文件上传漏洞靶场第一关pass-01:第二关Pass-02第三关pass-03:第四关pass-04:第五关pass-05:第六关pass-06:第七关Pass-07第八关Pass-08第九关Pass-09第十关Pass-10第十一…...

MATLAB遗传算法求解生鲜货损制冷时间窗碳排放多成本车辆路径规划问题
MATLAB遗传算法求解生鲜货损制冷时间窗碳排放多成本车辆路径规划问题实例 1、问题描述 已知配送中心和需求门店的地理位置,并且已经获得各个门店的需求量。关于送货时间的要求,门店都有规定的时间窗,对于超过规定时间窗外的配送时间会产生相应的惩罚成本。为保持生鲜农产品的…...

界面控件DevExpress .NET应用安全 Web API v23.1亮点:支持Swagger模式
DevExpress拥有.NET开发需要的所有平台控件,包含600多个UI控件、报表平台、DevExpress Dashboard eXpressApp 框架、适用于 Visual Studio的CodeRush等一系列辅助工具。 DevExpress 今年第一个重要版本v23.1日前已正式发布了,该版本拥有众多新产品和数十…...

SpringMVC之CRUD------增删改查
目录 前言 配置文件 pom.xml文件 web.xml文件 spring-context.xml spring-mvc.xml spring-MyBatis.xml jdbc.properties数据库配置文件 generatorConfig.xml log4j2日志文件 后台 PageBaen.java PageTag.java 切面类 biz层 定义一个接口 再写一个实现类 …...
微信小程序开发教学系列(4)- 抖音小程序组件开发
章节四:抖音小程序组件开发 在本章中,我们将深入探讨抖音小程序的组件开发。组件是抖音小程序中的基本构建块,它们负责展示数据和与用户交互。了解组件的开发方法和使用技巧是进行抖音小程序开发的重要一步。 4.1 抖音小程序的基本组件 抖…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...