当前位置: 首页 > news >正文

初高(重要的是高中)中数学知识点综合

1. 集合

1.1 集合的由来和确定性

 确定对象构成的整体称为集合(组成集合的元素必须是确定的 ),每个集合内的对象个体成为元素(Element)。确定性: 给定一个集合,任何一个对象是不是这个集合内的元素,就已经确定了。

比如,我国的四大发明,造纸术,印刷术,火药,指南针。就是一个明确的构成,这个集合就是四大发明。

四大发明 = {造纸术,印刷术,火药,指南针}

每个集合内的元素,使用逗号隔开。

元素和集合之间,存在 属于/不属于 两种关系,拿上面的四大发明集合来讲,比如:

造纸术属于四大发明集合;手机不属于四大发明集合;
火药属于四大发明集合;机关枪不属于四大发明集合;

为了方便书写,采用方便的符号形式来进行代替。

属于: ∈ 不属于: ∉

在用上述的例子,替换为符号就是

造纸术 ∈ 四大发明集合;手机 ∉ 四大发明集合;
火药 ∈ 四大发明集合;机关枪 ∉ 四大发明集合;

如果给定一个集合, {大学计算机系所有的高个子学生},那么这就是一个没有办法确定的内容,不能形成一个集合。你没办法明确知道高个子到底是多高。 如果是 {大学计算机系所有身高 > 170的高个子学生},那么这就给我们划分了一个很明确的界限,大于 170 cm 的同学,都可以被划分为高个子学生列表。那么就能形成一个集合。

测试题

1. 大于 3 小于 11 的偶数。		(是)
2. 我国的小河流。			(不是)
3. 所有的正方形。			(是)
4. 本班跑步很快的同学。		(不是)
5. 与1接近的实数的全体。		(不是)
6. 1——10以内的全体质数。		(是)

总结

1. 集合是一个由确定对象构成的整体。
2. 集合内的对象称为元素(Element)。
3. 属于 ∈   /   不属于 ∉
4. 集合的确定性,给定一个集合,任何一个对象是不是这个集合内的元素,就已经确定了。
5. 可见,对于给定一个集合和给定一个对象,这个对象是否为这个集合的元素,只有 “是” 与 “不是”,这两种情况,这就是集合中元素
所具有的确定性。

1.2 集合中元素的特性

在这里插入图片描述

  1. 确定性
    借鉴上面。

  2. 互异性

在集合中,集合内的元素必须是互异的,也就是说,对于一个给定的集合,他的任何两个元素都是不同的。
因为集合中的元素是没有重复现象的,所以任何两个相同的元素在同一集合内,只能算作这个集合中的一个元素。
  1. 无序性
集合与其中元素的排列次序无关,也就是说集合中的元素是不排序的。
例如: {1, 2} 也可以写成 {2, 1},他们两个是一样的。

1.3 常见数集

1.3.1 学习目标
  1. 理解常见数集的定义。
  2. 熟记常见数集的符号。
  3. 会判断数字与不同数集之间的关系。
1.3.2 自然数(Natural Number) 用以计量事物的件数 : N

自然数英语为 Natural Number, 所以用 大写 N 来表示自然数集

N = {1, 2, 3, 4, 5, 6, 7...}

在1993年对于自然数集做了重新定义,定义为:

  • 不小于 0 的所有整数叫 自然数集 / 非负整数 的集,也就是说,0 也是自然数集内的元素

扩展,在中国大陆2000年后的数学教材,自然数集内都包括 0。

在N后做一些特殊标记也有不同的意义,比如:

  1. N* : 除0意外的自然数集
  2. N+ : (+可以在N上面,也可以在N下面)正自然数集。
  3. 以此类推…
1.3.2 整数集(Whole Number): Z

整数并没有用 W 来表示整数集,有一种说法是:德国女数学家,诺特 (1882-1935)德意志数学家,抽象代数的奠基人,她提出的整数环对于整数有重大的意义 所以整数取得是德语 Zahlen(支付,数字)的首字母,Z

Z = {0, 1, -1, 2, -2....}
1.3.3 分数 (两个整数之比 — 商)

分数,指的是两个整数之比,古希腊数学家毕达哥拉斯提出了万物皆数的概念,还发现了著名的黄金比例。他们认为,整数和分数,就可以解释整个世界了。

1.3.4 有理数:两个整数之比 — 商(Quotient) : Q

所以,有理数采用商的首字母,Q来表示有理数集。准确来说。有理数包括整数和分数

  • Q = {整数和非零整数的比}

整数也可以表示成 9/1 (一分之九),8/1,5/1。 分数也可以表示为, 1/2, 3/8, 1/3

1.3.5 无理数:根号二是有理数吗?

并不是,常见的无理数有,开不尽的根号。 根号3,根号5,根号7,根号9.1 …, 无限不循环小数 Π = 3.1415926535…,自然数e等。不过到目前为止,无理数还没有统一的字幕表示。所有的有理数 + 无理数就是实数

1.3.6 实数(Real Number):R

实数集是所有的有理数 + 无理数,实数集是目前所学的最大的数集。我们所有学习过的数字都在这个集合里面。

在这里插入图片描述

1.3.7 练习题

用符号 “∈” 或者 “∉”填空。

1. 5__N,  -5__N,  0__N2. 3__Z,  -3__Z,  3.1__Z3. 3.14__Q,  Π__Q,  根号2__Q4. Π__R,  3.1__R,  根号三__R

答案

N是自然数集,大于切等于0的整数都是数集内的内容1. ∈,∉,∈Z是整数集,大于小于等于0的所有整数都属于集合内的内容。2. ∈,∈,∉Q是有理数集,也就是两数之比和所有的整数(小数,分数,正整数,负整数,0)3. ∈,∉,∉R是实数集,包括了N,Z,Q,无理数集,是学习过的最大的数集4. ∈,∈,∈

特殊符号集

1. 0__N+,  0__Z+,  0__R*
2. -3__Z+, -3__Z-, -3__Z*

答案

在数集后面跟 + 表示数集内的所有正数对象,  - 表示所有的复数对象,R表示0除外的所有对象
3. ∉,∉,∉
4. ∉,∈,∈
1.3.8 总结

学习了各个数集。总结内容如下

  1. N(自然数集) < Z(整数集) < Q(有理数集) < R(实数集),实际上是不能这样表示的,需要稍微改造一下。
  2. N(自然数集) ∈ Z(整数集) ∈ Q(有理数集) ∈ R(实数集)

1.4 集合的表示方法

相关文章:

初高(重要的是高中)中数学知识点综合

1. 集合 1.1 集合的由来和确定性 确定对象构成的整体称为集合&#xff08;组成集合的元素必须是确定的 &#xff09;&#xff0c;每个集合内的对象个体成为元素(Element)。确定性&#xff1a; 给定一个集合&#xff0c;任何一个对象是不是这个集合内的元素&#xff0c;就已经确…...

Fiddler 系列教程(二) Composer创建和发送HTTP Request跟手机抓包

Fiddler Composer介绍 Composer的官方帮助文档&#xff1a;http://www.fiddler2.com/fiddler/help/composer.asp Fiddler的作者把HTTP Request发射器取名叫Composer(中文意思是&#xff1a;乐曲的创造者), 很有诗意 Fiddler Composer的功能就是用来创建HTTP Request 然后发送…...

淘宝平台开放接口API接口

淘宝平台开放接口API接口是指淘宝平台提供给第三方开发者的一组接口&#xff0c;用于实现与淘宝平台的数据交互和功能扩展。通过API接口&#xff0c;第三方开发者可以获取淘宝平台上的商品信息、订单信息、用户信息等数据&#xff0c;也可以实现商品的发布、订单的创建和支付等…...

缓存夺命连环问

1. 为什么要用缓存&#xff1f; 用缓存&#xff0c;主要有两个用途&#xff1a;高性能、高并发。 高性能 假设这么个场景&#xff0c;你有个操作&#xff0c;一个请求过来&#xff0c;吭哧吭哧你各种乱七八糟操作 MySQL&#xff0c;半天查出来一个结果&#xff0c;耗时 600m…...

模型生成自动化测试用例

自动产生的测试用例本就应该由程序自动执行&#xff0c;这其实也就是NModel推荐的模式。先回过头来看看文章中制作的模型&#xff0c;模型里面将登录、注销、用户名以及密码等要素都抽象出来了&#xff0c;而NModel是以这些抽象出来的动作&#xff08;登录、注销&#xff09;和…...

归并排序-面试例子

小数和问题 描述 在一个数组中&#xff0c;一个数左边比它小的数的总和&#xff0c;叫数的小和&#xff0c;所有数的小和累加起来&#xff0c;叫数组小和。求数组小和。 例子 5 2 6 1 7 小和原始的求法是&#xff1a;任何一个数左边比它小的数累加起来。 5左边比它小数累加…...

docker 生成镜像的几个问题

docker 生成镜像的几个问题 根据jdk8.tar.gz 打包Jdk8 镜像失败运行镜像报错差不多是网络ip错误,在网上说重启docker即可解决运行mysql5.7.25 镜像失败向daemon.json文件添加内容导致docker重启失败docker run 命令常用参数根据jdk8.tar.gz 打包Jdk8 镜像失败 首选做准备工作…...

云计算时代的采集利器

大家好&#xff01;在今天的知识分享中&#xff0c;我们将探讨一个在云计算环境中的爬虫应用利器——独享IP。如果你是一名爬虫程序员&#xff0c;或者对数据采集和网络爬虫有浓厚的兴趣&#xff0c;那么这篇文章将向你展示独享IP在云计算环境下的应用价值。 1. 什么是独享IP&…...

【Unity编辑器扩展】| Inspector监视器面板扩展

前言【Unity编辑器扩展】| Inspector监视器面板扩展一、ContextMenu和ContextMenuItem二、Custom Editors 自定义编辑器三、Property Drawer 属性绘制器总结前言 前面我们介绍了Unity中编辑器扩展的一些基本概念及基础知识,还有编辑器扩展中用到的相关特性Attribute介绍。后面…...

Redis配置

关系型数据库和非关系型数据库 ①了解关系和非关系 关系型数据库 一个结构化的数据库&#xff0c;创建在关系模型基础上&#xff0c;一般面向于记录&#xff0c;包括Oracle、MySQL、SQL Server、Microsoft Access、DB2、postgreSQL等 非关系型数据库 除了主流的关系型数据库…...

CSDN每日一练 |『小艺照镜子』『Ctrl+X,Ctrl+V』『括号上色』2023-09-11

CSDN每日一练 |『小艺照镜子』『Ctrl+X,Ctrl+V』『括号上色』2023-09-11 一、题目名称:小艺照镜子二、题目名称:Ctrl+X,Ctrl+V三、题目名称:括号上色一、题目名称:小艺照镜子 时间限制:1000ms内存限制:256M 题目描述: 已知字符串str。 输出字符串str中最长回文串的长度…...

React 全栈体系(四)

第二章 React面向组件编程 六、组件的生命周期 1. 效果 需求:定义组件实现以下功能&#xff1a; 让指定的文本做显示 / 隐藏的渐变动画从完全可见&#xff0c;到彻底消失&#xff0c;耗时2S点击“不活了”按钮从界面中卸载组件 <!DOCTYPE html> <html lang"e…...

各种UI库使用总结

各种UI库使用总结 工作了这么年&#xff0c;使用了一些UI库&#xff0c;简单的总结一下&#xff0c;UI库也是五花八门&#xff0c;根据自己的产品&#xff0c;应用场景吧&#xff0c;没有绝对合适的&#xff0c;各有各的应用场景吧&#xff01; QT 这几年前后在一些嵌入式上…...

2023Web前端开发面试手册

​​​​​​​​ HTML基础 1. HTML 文件中的 DOCTYPE 是什么作用&#xff1f; HTML超文本标记语言: 是一个标记语言, 就有对应的语法标准 DOCTYPE 即 Document Type&#xff0c;网页文件的文档类型标准。 主要作用是告诉浏览器的解析器要使用哪种 HTML规范 或 XHTML规范…...

一文了解数据科学Notebook

编者按&#xff1a; 主要介绍什么是Notebook&#xff0c;Notebook在数据科学领域的应用的重要性与优势&#xff0c;以及数据科学家/算法团队在选择Notebook时需考虑哪些关键因素。同时&#xff0c;基于Notebook的筛选考量维度&#xff0c;对常见的Notebook进初步对比分析&#…...

2020年12月 C/C++(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:数组指定部分逆序重放 将一个数组中的前k项按逆序重新存放。例如,将数组8,6,5,4,1前3项逆序重放得到5,6,8,4,1。 时间限制:1000 内存限制:65536 输入 输入为两行: 第一行两个整数,以空格分隔,分别为数组元素的个数n(1 < n…...

关于ChatGPT的个人的一些观点

问题 1 Q: 你认为ChatGPT是一款非常有用的工具吗&#xff1f; A: 我认为ChatGPT是一款非常有用的工具。它可以帮助人们解决各种问题&#xff0c;包括技术问题、心理问题、生活问题等等。同时&#xff0c;ChatGPT也可以成为人们分享想法和交流的平台&#xff0c;增强人与人之间…...

Solidity 小白教程:13. 继承

Solidity 小白教程&#xff1a;13. 继承 这一讲&#xff0c;我们介绍solidity中的继承&#xff08;inheritance&#xff09;&#xff0c;包括简单继承&#xff0c;多重继承&#xff0c;以及修饰器&#xff08;modifier&#xff09;和构造函数&#xff08;constructor&#xff…...

队列(Queue)的顶级理解

目录 1.队列(Queue) 的概念 2.单链表模拟实现队列 2.1创建队列 2.2入队列 2.3判断是否为空 2.4出队列 2.5获取队头元素 2.6完整代码&#xff1a; 2.7双向链表模拟实现队列代码 3.数组模拟实现队列代码 3.1创建队列 3.2判断是否为满 3.3检查是否为空 3.4插入元素 3…...

选择 Guava EventBus 还是 Spring Framework ApplicationEvent

文章首发地址 Spring Framework ApplicationEvent Spring Framework 的 ApplicationEvent 是 Spring 框架提供的一种事件机制&#xff0c;用于实现发布和订阅事件的功能。它基于观察者模式&#xff0c;允许应用程序内的组件之间进行松耦合的通信。 下面是关于 Spring Frame…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...