QT人脸识别知识
机器学习的作用:根据提供的图片模型通过算法生成数据模型,从而在其它图片中查找相关的目 标。
级联分类器:是用来人脸识别。 在判断之前,我们要先进行学习,生成人脸的模型以便后续识别使用。
人脸识别器:判断是谁的面部。 FaceRecognizer类是opencv提供的人脸识别器基类,LBPHFaceRecognizer是根据LBPH算法实现的识别器类,其中LBPHFaceRecognizer识别器支持在原有模型基础上继续学习(模型数据可以累计)。
创建LBPHFaceRecognizer识别器对象
所需的头文件:#include 、using namespace cv::face;创建空的人脸识别器对象:Ptr<FaceRecognizer> recognizer =LBPHFaceRecognizer::create();根据已有的模型创建人脸识别器对象,在创建人脸识别器的时候,需要一个已经学习好的模型文件:Ptr<FaceRecognizer> recognizer = FaceRecognizer::load<LBPHFaceRecognizer>("模型文件.xml");
机器学习并更新模型
容器:容器中装了n张人脸Mat对象,先采集脸,装到容器中,存储标签,人的身份证,每一张脸给一个编号:1 张三脸 2 李四脸 3 王五脸。功能函数1:void update(InputArrayOfArray src,InputArray labels)//机器学习并更新模型功能函数2:void train(InputArrayOfArrays src,InputArray labels);//只是学习,不更新//参数1src:图片模型数组 vector<Mat>//参数2labels:标签数组,每个模型识别后的标签vector<int>
保存模型
功能函数:void save(const String& filename);//参数1:模型文件的名字例如:recognizer->update(study_faces,study_label);//学习recognizer->save("face.xml");//将学习的成果,保存到face.xml模型文件中,生成模型:study_faces.clear();、study_labels.clear();
预测目标
判断这个人脸到底是谁。功能函数:void predict(InputArray src, int &label, double &confidence)//参数1:预测图形 Mat src//参数2::预测后的标签,学习时对应的标签//参数3:预测出结果的可信度,数值越小可信度越高例如:int label = -1;//预测后的标签,学习时对应的标签double confidence = 0;//可信度Mat face = frame(faces[0]);//人脸区域cvtColor(face,face,CV_BGR2GRAY);//更改色彩空间cv::resize(face,face,Size(90,90));//设置人脸的大小recognizer->predict(face,label,confidence); //预测,相当于识别人脸,预测出人脸是谁的面部,label的值就那张脸对应的标签,如果预测不到,label的值是-1。
设置可信度
功能函数:void setThreshold(double val);//参数1:预测可信度极值,预测可信度超出极值则预测失败。
实例:
头文件
#ifndef WIDGET_H
#define WIDGET_H#include <QWidget>
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
#include<opencv2/face.hpp>
#include <vector>
#include <map>
#include <QMessageBox>
#include <QDebug>
#include <QFile>
#include <QTextStream>
#include <QDateTime>
#include <QTimerEvent>
#include<QtSerialPort/QtSerialPort>
#include<QtSerialPort/QSerialPortInfo>
using namespace cv;
using namespace cv::face;
using namespace std;namespace Ui {
class Widget;
}class Widget : public QWidget
{Q_OBJECTpublic:explicit Widget(QWidget *parent = 0);~Widget();private slots:void on_openCameraBtn_clicked();void on_closeCameraBtn_clicked();void on_inputFaceBtn_clicked();private:Ui::Widget *ui;/***********************第一模块:关于摄像头的相关组件**********************/VideoCapture v; //视频流对象Mat src; //原图像Mat rgb; //存放rgb图像,因为qt能识别的图像色彩空间为rgbMat gray; //灰度图Mat dst; //均衡化图像CascadeClassifier c; //级联分类器vector<Rect> faces; //存储人脸矩形区域的容器int cameraId; //摄像头的定时器void timerEvent(QTimerEvent *event); //定时器事件处理函数/**********************第二模块:录入人脸的相关组件************************/Ptr<FaceRecognizer> recognizer; //人脸识别器vector<Mat> study_face; //要录入的人脸容器vector<int> study_lab; //要录入的人脸的标签int studyId; //人脸录入的定时器int flag; //标识是否正在录入人脸int count; //记录学习的次数/**********************第三模块:人脸检测相关组件*************************/int checkId; //人脸检测的定时器};#endif // WIDGET_H
源文件:
#include "widget.h"
#include "ui_widget.h"Widget::Widget(QWidget *parent) :QWidget(parent),ui(new Ui::Widget)
{ui->setupUi(this);//将登录按钮设置成不可用状态ui->loginBtn->setEnabled(false);//启动摄像头if(!v.open(0)){QMessageBox::information(this, "错误","打开摄像头失败");return ;}//将级联分类器加载进来if(!c.load("D:/opencv/resource/haarcascade_frontalface_alt2.xml")){QMessageBox::information(this,"失败", "人脸识别模型装载失败");return ;}//配置人脸识别器QFile file("D:/opencv/resource/myFace.xml");//判断文件是否存在,如果存在,则直接下载,如果不存在,则创建一个人脸识别器if(file.exists()){//人脸模型存在,直接下载即可recognizer = FaceRecognizer::load<LBPHFaceRecognizer>("D:/opencv/resource/myFace.xml");}else{//人脸模型不存在,需要进行创建recognizer = LBPHFaceRecognizer::create();}//启动人脸检测的定时器checkId = this->startTimer(3000);//设置人脸识别的可信度recognizer->setThreshold(100);flag = 0; //表明开始时就处于检测}Widget::~Widget()
{delete ui;
}
//打开摄像头按钮对应的槽函数
void Widget::on_openCameraBtn_clicked()
{//启动定时器cameraId = this->startTimer(20);ui->cameraLab->show();
}//关闭摄像头
void Widget::on_closeCameraBtn_clicked()
{//关闭定时器this->killTimer(cameraId);ui->cameraLab->hide();}//定时器事件处理函数
void Widget::timerEvent(QTimerEvent *event)
{//判断是哪个定时器到位if(event->timerId() == cameraId){//1、从摄像头中读取一张图像v.read(src); //得到原图//2、将图像翻转flip(src, src, 1);//3、将src的bgr图像转换为rgb图像cvtColor(src, rgb, CV_BGR2RGB);//4、重新设置大小cv::resize(rgb, rgb, Size(300,300));//5、灰度处理cvtColor(rgb, gray, CV_RGB2GRAY);//6、均衡化处理equalizeHist(gray, dst);//7、使用级联分类器获取人脸矩形区域c.detectMultiScale(dst, faces);//8、将矩形框绘制到rgb图像上for(int i=0; i<faces.size(); i++){rectangle(rgb, faces[i], Scalar(255,0,0), 2);}//9、使用rgb图像,将Mat图,构造出一个qt能识别的图像QImage img(rgb.data, rgb.cols, rgb.rows, rgb.cols*rgb.channels(), QImage::Format_RGB888);//功能:通过其他图像构造出一个QImage图像//参数1:其他图像的数据//参数2:图像的宽度//参数3:图像的高度//参数4:每一行的字节数//参数5:图像格式,24位图,每一种颜色使用8位表示//10、将图像展示到lab中ui->cameraLab->setPixmap(QPixmap::fromImage(img));}//判断是否是人脸录入定时器到位if(event->timerId() == studyId){//判断ui界面是否有矩形框if(faces.empty())return;//判断人脸识别器是否存在if(recognizer.empty()) return;//提示正在录入人脸qDebug()<<"正在录入,请稍后...";//获取ui界面中矩形框框起来的人脸区域Mat face = src(faces[0]);//将该图像进行重新设置大小cv::resize(face,face,Size(100,100));//灰度处理cvtColor(face,face,CV_BGR2GRAY);//均衡化处理equalizeHist(face,face);//将人脸放入学习容器中study_face.push_back(face);study_lab.push_back(1);count++; //表明完成一次人脸的存放if(count == 50) //已经收集50张人脸进行学习{count = 0; //以便于下一次录入//更新人脸模型,将图像模型转换为数据模型//函数原型:void update(InputArrayOfArrays src, InputArray labels);//参数1:要进行更新的人脸数组//参数2:要跟新的人脸标签数组//返回值:无recognizer->update(study_face, study_lab);//将数据模型保存到本地磁盘中recognizer->save("D:/opencv/resource/myFace.xml");//殿后工作study_face.clear(); //清空人脸数组study_lab.clear(); //清空标签数组flag = 0; //表明录入已经结束,可以进行人脸检测了ui->inputFaceBtn->setEnabled(true); //按钮设置成可用状态this->killTimer(studyId); //关闭人脸录入的定时器QMessageBox::information(this,"成功","人脸录入成功");}}//判断是否是人脸检测的定时器到位if(event->timerId() == checkId){qDebug()<<"正在检测...";//判断是否处于检测if(flag == 0){QFile file("D:/opencv/resource/myFace.xml");if(file.exists()) //表明人脸模型存在的基础上进行识别{if(faces.empty() || recognizer->empty()) return; //ui界面无矩形框或者没有人脸识别器//到此表明可以进行检测Mat face = src(faces[0]);//重新设置大小,保持跟保存人脸时一致cv::resize(face,face,Size(100,100));//灰度处理cvtColor(face,face,CV_BGR2GRAY);//均衡化处理equalizeHist(face,face);//定义记录检测后返回的结果的变量int lab = -1; //返回的图像的标签double conf = 0.0; //返回图像的可信度//将该人脸进行预测recognizer->predict(face, lab, conf);qDebug()<<"lab = "<<lab<<" conf = "<<conf;//对人脸识别后的结果进行判断if(lab != -1){ui->loginBtn->setEnabled(true);}}}}}//录入人脸按钮对应的槽函数
void Widget::on_inputFaceBtn_clicked()
{//启动人脸录入的定时器qDebug()<<"开始进行人脸录入...";studyId = this->startTimer(60);//将按钮设置成不可用状态ui->inputFaceBtn->setEnabled(false);//将flag设置成1,表示正在录入人脸,不要进行人脸检测了flag = 1;count = 0; //清空计数器
}
相关文章:
QT人脸识别知识
机器学习的作用:根据提供的图片模型通过算法生成数据模型,从而在其它图片中查找相关的目 标。 级联分类器:是用来人脸识别。 在判断之前,我们要先进行学习,生成人脸的模型以便后续识别使用。 人脸识别器:…...
熟悉Redis6
NoSQL数据库简介 技术发展 技术的分类 1、解决功能性的问题:Java、Jsp、RDBMS、Tomcat、HTML、Linux、JDBC、SVN 2、解决扩展性的问题:Struts、Spring、SpringMVC、Hibernate、Mybatis 3、解决性能的问题:NoSQL、Java线程、Hadoop、Nginx…...
ip地址会随网络变化而变化吗
随着科技的飞速发展,互联网已深入我们生活的方方面面。在这庞大的网络世界中,IP地址作为网络通信的基础元素,引起了广泛关注。网络变化与IP地址之间存在着密切的关系。那么,IP地址是否会随着网络变化而变化呢?虎观代理…...
QT连接服务器通信,客户端以及服务器端
服务器端 .h文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器头文件 #include <QTcpSocket> //客户端头文件 #include <QList> //链表头文件,用来存放客户端容器 #include <QDebug> #i…...
Vuex仓库的创建
vuex 的使用 - 创建仓库 文章目录 vuex 的使用 - 创建仓库1.安装 vuex2.新建 store/index.js 专门存放 vuex3.创建仓库 store/index.js4 在 main.js 中导入挂载到 Vue 实例上5.测试打印Vuex 1.安装 vuex 安装vuex与vue-router类似,vuex是一个独立存在的插件&#x…...
C++中的红黑树
红黑树 搜索二叉树搜索二叉树的模拟实现平衡搜索二叉树(AVL Tree)平衡搜索二叉树的模拟实现红黑树(Red Black Tree)红黑树的模拟实现 红黑树的应用(Map 和 Set)Map和Set的封装 搜索二叉树 搜索二叉树的概念:二叉搜索树又称二叉排序树,它或者是一棵空树&…...
SQL语法知识回顾
一、SQL语言的分类 由于数据库管理系统(数据库软件)功能非常多,不仅仅是存储数据,还要包含:数据的管理、表的管理、库的管理、账户管理、权限管理等等。所以,操作数据库的SQL语言,也基于功能&am…...
Java基础二十七(泛型)
泛型 Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型。 泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。 Java的泛型是伪…...
Python入门教程36:urllib网页请求模块的用法
urllib是Python中的一个模块,它提供了一些函数和类,用于发送HTTP请求、处理URL编码、解析URL等操作。无需安装即可使用,包含了4个模块: #我的Python教程 #官方微信公众号:wdPythonrequest:它是最基本的htt…...
LeetCode 每日一题 2023/9/4-2023/9/10
记录了初步解题思路 以及本地实现代码;并不一定为最优 也希望大家能一起探讨 一起进步 目录 9/4 449. 序列化和反序列化二叉搜索树9/5 2605. 从两个数字数组里生成最小数字9/6 1123. 最深叶节点的最近公共祖先9/7 2594. 修车的最少时间9/8 2651. 计算列车到站时间9/…...
C# Onnx Yolov8 Seg 分割
效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…...
Postman接口测试流程
一、工具安装 ● 安装Postman有中文版和英文版,可以选择自己喜欢的版本即可。安装时重新选择一下安装路径(也可以默认路径),一直下一步安装完成即可。(本文档采用英文版本)安装文件网盘路径链接࿱…...
探索GreatADM:如何快速定义监控
引文 在数据库运维过程中,所使用的运维管理平台是否存在这样的问题: 1、默认监控粒度不够,业务需要更细颗粒度的监控数据。2、平台默认的监控命令不适合,需要调整阈值量身定制监控策略。3、不同类型的实例或组件需要有不同的监控重点,但管理平台监控固…...
C# 参数名加冒号,可以打乱参数顺序
今天看到Python有这种语法,参数名后面跟着等号写参数,联想到前几天用到的Serilog,好像有个参数名加冒号的写法,搜索了一下,果真有这种用法。 函数特别大的时候,用这种方法很直观,而且参数可以打…...
AVL树 模拟实现(插入)
目录 模拟插入节点 左单旋 右单旋 右左双旋 左右双旋 总结 实现 插入实现 左单旋实现 右单旋实现 右左双旋实现 左右双旋实现 AVL树 模拟实现(插入) AVL 树,是高度平衡二叉搜索树,其主要通过旋转来控制其左右子树的高…...
Java面试整理(三)《JavaSE》
反射机制(低) 在我刚开始学Java的时候,大家都很难理解反射这个概念,在实际开发中,虽然都有反射的踪影,但感觉自己又能理解是的。反射机制是指在程序运行时,对任意一个类都能获取其所有属性和方法,并且对任意一个对象都能调用其任意一个方法。 反射的步骤如下: 获取想要…...
LeetCode 1282. Group the People Given the Group Size They Belong To【哈希表】1267
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...
Vue2项目练手——通用后台管理项目第八节
Vue2项目练手——通用后台管理项目 菜单权限功能tab.jsLogin.vueCommonAside.vuerouter/index.js 权限管理问题解决router/tab.jsCommonHeader.vuemain.js 菜单权限功能 不同的账号登录,会有不同的菜单权限通过url输入地址来显示页面对于菜单的数据在不同页面之间的…...
leetcode872. 叶子相似的树(java)
叶子相似的树 题目描述递归 题目描述 难度 - 简单 leetcode - 872. 叶子相似的树 请考虑一棵二叉树上所有的叶子,这些叶子的值按从左到右的顺序排列形成一个 叶值序列 。 举个例子,如上图所示,给定一棵叶值序列为 (6, 7, 4, 9, 8) 的树。 如果…...
【Linux从入门到精通】信号(初识信号 信号的产生)
本篇文章会对Linux下的信号进行详细解释。主要内容是什么是信号、信号的产生、核心转储等问题。希望本篇文章会对你有所帮助。 文章目录 引入 一、初识信号 1、1 生活中的信号 1、2 Linux 下的信号 1、3 信号进程所得的初识结论 二、信号的产生 2、1 用户通过终端输入产生信号 …...
Golang综合项目实战(一)
Golang综合项目实战(一) 01-项目简介02-项目架构、术语、运行结果03-创建并初始化项目04-创建用户模型和错误处理05-创建密码加密工具类06-保存密码之前的hooks07-创建用户名密码验证工具类08-用户数据库操作逻辑09-操作用户service10-创建商品分类模型…...
springmvc 获取项目中的所有请求路径
springboot/springmvc 获取项目中的所有请求路径 1. 编写业务代码 Autowiredprivate WebApplicationContext applicationContext;GetMapping("/getAllURL")public RestfulResult getAllURL() {// 获取springmvc处理器映射器组件对象 RequestMappingHandlerMapping无…...
【React学习】React高级特性
1. 函数式组件和类组件区别 函数式组件 函数式组件是一种简单的组件定义方式,它是一个以JavaScript函数为基础的组件。 可以把函数式组件理解为纯函数,它的输入为props,输出为JSX。函数式组件没有状态,也没有生命周期。 functio…...
如何在Windows系统搭建filebrowser私人网盘并实现在外网访问本地内网
Windows系统搭建网盘神器filebrowser结合内网穿透实现公网访问 文章目录 Windows系统搭建网盘神器filebrowser结合内网穿透实现公网访问前言1.下载安装File Browser2.启动访问File Browser3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3…...
蓝桥杯官网练习题(算式900)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小明的作业本上有道思考题: 看下面的算式: (□□□□-□□□□)*□□900其中的小方块代表 0 ~ 9 的数字,这 10 个方块刚好包含了…...
【C++从入门到精通】第1篇:C++基础知识(上)
文章目录 1.1 C语句和程序结构1.1.1 本篇介绍1.1.2 语句1.1.3 函数和主函数1.1.4 解析Hello world1.1.5 语法和语法错误1.1.6 练习时间 1.2 注释1.2.1 单行注释1.2.2 多行注释1.2.3 正确使用注释1.2.4 注释掉代码 1.3 对象和变量1.3.1 数据和值1.3.2 对象和变量1.3.3 变量实例化…...
liunx系统无sudo或管理员权限安装rar解压安装包
liunx无sudo权限安装rar解压安装包 (1)正常liunx安装rar(2)无sudo\root(管理员身份)时如何安装rar (1)正常liunx安装rar 1、下载安装包 WinRAR archiver, a powerful tool to process RAR and ZIP files (r…...
浅析目标检测入门算法:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4
本文致力于让读者对以下这些模型的创新点和设计思想有一个大体的认识,从而知晓YOLOv1到YOLOv4的发展源流和历史演进,进而对目标检测技术有更为宏观和深入的认知。本文讲解的模型包括:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4…...
C++:类和对象(三)
本文主要介绍初始化列表、static成员、友元、内部类、匿名对象、拷贝对象时编译器的优化。 目录 一、再谈构造函数 1.构造函数体赋值 2.初始化列表 3.explicit关键字 二、static成员 1.概念 2.特性 三、友元 1.友元函数 2.友元类 四、内部类 五、匿名对象 六、拷…...
分布式系统第三讲:全局唯一ID实现方案
分布式系统第三讲:全局唯一ID实现方案 本文主要介绍常见的分布式ID生成方式,大致分类的话可以分为两类:一种是类DB型的,根据设置不同起始值和步长来实现趋势递增,需要考虑服务的容错性和可用性; 另一种是类snowflake型…...
源码之家网站/软文营销的定义
在AngularJs中作用域是非常重要的。 $scope可以嵌套,存在父子作用域,兄弟作用域,那么它们这些作用域相互怎么相互发送信息了。 父子作用域: 看如下代码:(在html标签中添加ng-appmyApp) <div ng-contro…...
wordpress多网站整合在一个后台/广州seo顾问
c中允许在结构体当中定义函数,它的用法和类的用法很像,不过与类有一个区别在于,struct中定义的函数和变量都是默认为public的,但class中的则是默认为private 如: #include<iostream> #include<string> s…...
都匀住房和城乡建设部网站/搜索引擎营销是指
android默认的视频采集格式是NV21,(属于YUV420) 在onPreviewFrame中传进来的byte[] data即为NV21格式。 旋转算法 对NV21进行顺时针旋转90度,180度和270度算法。 旋转90度 privatebyte[] rotateYUV420Degree90(byte[] data, int i…...
企业网上推广方式/windows优化大师免费
LeetCode 1401. 圆和矩形是否有重叠 难度 中等 给你一个以 (radius, x_center, y_center) 表示的圆和一个与坐标轴平行的矩形 (x1, y1, x2, y2),其中 (x1, y1) 是矩形左下角的坐标,(x2, y2) 是右上角的坐标。 如果圆和矩形有重叠的部分,请…...
开购物网站需要多少钱/网页设计效果图及代码
www.bnjyedu.com...
用c做网站/百度推广怎么做免费
近几年以来,Python 的应用场景越来越多,几乎可以应用于自然科学、工程技术、金融、通信和商业等各种领域。究其原因在于 Python 的简单易学、功能强大。 想系统地学点东西,发现很多不错的技术文档都是英文资料,发现英文竟然成为了…...