当前位置: 首页 > news >正文

高分三号1米分辨率飞机检测识别数据集

二、背景介绍
合成孔径雷达(Synthetic Aperture Radar, SAR) 是一种主动式的微波成像系统,它不受光照、云雾 和气候等自然条件影响,具备全天时、全天候对地 观测的能力,已成为遥感领域重要的信息获取平 台。近年来,随着遥感成像技术的蓬勃发展和 SAR卫星在轨数量的不断增加,SAR系统获取数据 的数量和质量得到显著提升,促进了SAR在相关领 域的发展和应用。海量的高分辨率数据为SAR图 像精细化理解提供了丰富的数据基础与支撑。 目标检测和识别是SAR图像智能化解译的重要 一环。飞机作为SAR图像中的典型目标,数量较多、 种类丰富,具有较大的观测价值。
基于SAR图像 的飞机检测识别能获取飞机目标的型号、种类、位 置、状态等信息,可有效辅助重点区域动态监视、 态势分析、紧急救援等应用。因此,利用高分辨率 SAR图像对飞机目标进行检测别具有重要的研究 意义。 近年来,随着深度学习理论和技术的发展,基于卷积神经网络的方法在SAR图像目标检测识别领域取得了较大进展。在SAR飞机检测识别方面,Zhao等人提出一种多分支空洞卷积特征金字塔方法,通过建立密集连接来减少冗余信息并突出飞机的重要特征。文献设计了一个注意力模块来融合细化低层纹理特征和高层语义特征,进一步提高飞机检测率。
在SAR舰船检测识别任务中,文献通过直接学习回归框的位置,来减少对预定义框超参数的依赖,并且进一步实现舰船目标的细粒度识别。海上舰船容易与海面形成强反射的二面角,在SAR图像中通常呈现为轮廓完整、连通性强的强散射点集合。相比海上舰船,陆地飞机目标尺寸较小,特征不容易提取,散射点之间较为离散,准确定位和识别的难度较大。针对背景中存在强散射干扰的问题,本文提出 了结合散射感知的SAR图像飞机目标检测识别一体 化的方法。总体框架如图所示,提出的方法基于 无锚框(anchor-free)算法的结构,主要由上下文引 导的特征金字塔网络(ContextGuided Feature Pyramid Network, CG-FPN)和散射感知检测头 (ScatteringAware detection Head, SA-Head)两个部分组成。

8bdfeedfd7dc4720bf78ac0ca884328c.png

二、数据集基本情况

       高分辨率SAR飞机检测识别数据集中所有图像采集自高分三号卫星,极化方式为单极化,空间分辨率为1m,成像模式为聚束式。数据集主要选用上海虹桥机场、北京首都机场和台湾桃园机场3个民用机场的影像数据,包含800×800、1000×1000、1200×1200和1500×1500共4种不同尺寸,共有4368张图片和16463个飞机目标实例。飞机的7个类别为:A220、A320/321、A330、ARJ21、Boeing737、 Boeing787和other,各个类别的实例以及数量如图1和图2所示,其中other表示不属于其余6个类别的飞机实例。

       图1 不同类别SAR飞机和光学飞机样本示例图▼116c0901bcfa4b5a9d28b779135f322f.png

 

       图2 数据集各个类别的实例数量图▼29c6d98108ff4d0584b6158dd68afa12.png

 

       在实例的标注方面,高分辨率SAR飞机检测识别数据集中所有实例目标均使用水平矩形框进行标注,与Pascal VOC格式保持一致。

       图3 数据集标注示意图▼39b4cbd621c24cb49359508eaf100448.png

 

       三、数据集的特点

       高分辨率SAR飞机检测识别数据集有以下特点:

       (1) 场景复杂:数据集包含多个民用机场不同时相的图像,这些图像覆盖面积大,背景中包含了航站楼、车辆、建筑物等设施,增加了数据集场景的复杂性。

       (2) 类别丰富:不同于一般的SAR飞机数据集,SAR-AIRcraft-1.0数据集包含了飞机目标的细粒度类别信息。此外,不同类别之间相似的散射表征增加了飞机识别的难度。

       (3) 目标密集:一张切片图像中包含多个飞机目标,多个飞机目标停靠在航站楼附近,分布较为密集,目标之间存在互相干扰,影响检测识别的准确率。

       (4) 噪声干扰:由于SAR的成像特性,图像中存在着一些相干斑噪声的干扰,给飞机目标准确检测和识别带来一定的挑战。

       (5) 任务多样:该数据集不仅支持检测任务,同时包含了类别信息,通过对数据集中飞机目标进行裁剪,得到多类别的目标切片,进而可以实现飞机的细粒度识别。此外,位置和类别信息的存在,使其可以应用在检测识别一体化任务中。

       (6) 多尺度性:该数据集中飞机目标切片的尺寸分布跨度广。如图4所示,有一部分目标尺寸在50×50以下,也有一部分飞机目标尺寸在100×100以上,整体呈现出目标多尺度的特点。

       图4 数据集飞机目标的尺寸分布图▼a5136c5c19af414fa380300bec2155fa.png

 

       四、数据集下载

高分三号1米分辨率飞机检测识别数据集可以登录:https://www.dilitanxianjia.com/11525/;文件夹内含有数据集3个压缩包,如下图所示。

e213b12c2c494d569e0cb9ff62aab84f.png

 

 

 

相关文章:

高分三号1米分辨率飞机检测识别数据集

二、背景介绍 合成孔径雷达(Synthetic Aperture Radar, SAR) 是一种主动式的微波成像系统,它不受光照、云雾 和气候等自然条件影响,具备全天时、全天候对地 观测的能力,已成为遥感领域重要的信息获取平 台。近年来,随着遥感成像技…...

Unity 之Material 类型和 MeshRenderer 组件中的 Materials 之间有一些重要的区别

文章目录 区别代码例子 区别 在Unity中,Material 类型和 MeshRenderer 组件中的 Materials 之间有一些重要的区别。 Material 类型: Material 是 Unity 中用来定义渲染属性的资源。它包含了一系列定义了如何绘制一个对象的属性,比如颜色、纹…...

【LeetCode-简单题】977. 有序数组的平方

文章目录 题目方法一:双指针方法二: 题目 方法一:双指针 class Solution { // 方法一 :双指针public int[] sortedSquares(int[] nums) {int left 0;int right nums.length -1 ;int[] res new int[nums.length];//结果集新数组…...

【笔试强训选择题】Day39.习题(错题)解析

作者简介:大家好,我是未央; 博客首页:未央.303 系列专栏:笔试强训选择题 每日一句:人的一生,可以有所作为的时机只有一次,那就是现在!!!&#xff…...

Prometheus-Alertmanager 警报管理器-部署和设置

文章目录 一、介绍二、核心概念1 Grouping 分组2 Inhibition 抑制3 Silences 静默(静音)5 High Availability 高可用性 三、部署1 二进制方式下载配置 systemd 2 docker-compose 方式 四、配置1 配置文件介绍1.1 全局配置1.2 receiver 接收器标准接收器相…...

恒运资本:小盘股的优点?投资小盘股要注意哪些方面?

股市是一个充溢时机和危险的当地,不同出资者有不同的偏好,有的人喜爱追逐大盘蓝筹股,有的人则钟情于小盘股。那么小盘股的长处?出资小盘股要注意哪些方面?恒运资本也为我们准备了相关内容,以供参考。 小盘股…...

LeetCode:2. 两数之和

这个解题思路来自代码随想录&#xff1a;代码随想录 (programmercarl.com) class Solution { public:vector<int> twoSum(vector<int>& nums, int target) {std::unordered_map <int,int> map;for(int i 0; i < nums.size(); i) {// 遍历当前元素&am…...

OpenCV(二十四):可分离滤波

目录 1.可分离滤波的原理 2.可分离滤波函数sepFilter2D() 3.示例代码 1.可分离滤波的原理 可分离滤波的原理基于滤波器的可分离性。对于一个二维滤波器&#xff0c;如果它可以表示为水平方向和垂直方向两个一维滤波器的卷积&#xff0c;那么它就是可分离的。也就是说&#x…...

【JS进阶】防抖与节流

防抖与节流 1.防抖 1.1 为什么要防抖&#xff1f; 在项目中&#xff0c;有的操作是高频触发的&#xff0c;但是其实触发一次就好了&#xff0c;比如我们短时间内多次缩放页面&#xff0c;那么我们不应该每次缩放都去执行操作&#xff0c;应该只做一次就好。再比如说监听输入…...

【css】linear-gradient()的用法

linear-gradient() CSS函数创建一个由两种或多种颜色沿一条直线进行线性过渡的图像,其结果是<gradient>数据类型的对象,此对象是一种特殊的<image> 数据类型。 语法 /* 渐变轴为 45 度&#xff0c;从蓝色渐变到红色 */ linear-gradient(45deg, blue, red);/* 从右…...

java: 读取snakeyaml-1.26.jar各种jar包时出错; error in opening zip file

可能的问题 jar有问题idea没有权限等等其他问题。但执行后报错就是读取不了&#xff0c;还报error in opening zip file这个错。 解决问题 我的错就是jar包有问题。我先后进行了很多次把jar包位置里的东西全部删除&#xff0c;然后重新maven下载但是不管用。最后从网站上下载…...

医疗知识图谱 neo4j

开源项目&#xff1a; https://github.com/liuhuanyong/QASystemOnMedicalKG 一.效果 二.需要安装&#xff1a; pip install pyahocorasick pip install py2neo 三.需要修改&#xff1a; 需要改的点&#xff1a; 1.改连接的方式 2.改读文件的方式 MedicalGraph 运行&am…...

【LeetCode-简单题】367. 有效的完全平方数

文章目录 题目方法一&#xff1a;二分查找 题目 方法一&#xff1a;二分查找 找 1 - num 之间的 mid&#xff0c; 开方是整数 就找得到 mid&#xff0c; 不是整数自然找不到mid class Solution { // 二分查找 &#xff1b;找 1 - num 之间的mid 开方是整数 就找得到 不是…...

vben-admin中渲染table表格时怎么处理不同的数据结构

最近在用vben admin开发后台管理系统&#xff0c;vben admin这个后管端框架封装的非常细&#xff0c;颗粒度非常细&#xff0c;如果了解里面的组件或者api用法&#xff0c;那开发起来非常快。如果不了解&#xff0c;那就非常痛苦了&#xff0c;目前关于vben admin这块的开发问题…...

从零开始在树莓派上搭建WordPress博客网站并实现公网访问

文章目录 序幕概述1. 安装 PHP2. 安装MySQL数据库3. 安装 Wordpress4. 设置您的 WordPress 数据库设置 MySQL/MariaDB创建 WordPress 数据库 5. WordPress configuration6. 将WordPress站点发布到公网安装相对URL插件修改config.php配置 7. 支持好友链接样式8. 定制主题 序幕 …...

Go基础18-理解方法的本质以选择正确的receiver类型

Go语言虽然不支持经典的面向对象语法元素&#xff0c;比如类、对象、继承等&#xff0c;但Go语言也有方法。和函数相比&#xff0c;Go语言中的方法在声明形式上仅仅多了一个参数&#xff0c;Go称之为receiver参数。receiver参数是方法与类型之间的纽带。 Go方法的一般声明形式…...

Go基础12-理解Go语言表达式的求值顺序

Go语言在变量声明、初始化以及赋值语句上相比其先祖C语言做了一些改进&#xff0c;诸如&#xff1a; ● 支持在同一行声明和初始化多个变量&#xff08;不同类型也可以&#xff09; var a, b, c 5, "hello", 3.45 a, b, c : 5, "hello", 3.45 // 短变量…...

OJ练习第165题——修车的最少时间

修车的最少时间 力扣链接&#xff1a;2594. 修车的最少时间 题目描述 给你一个整数数组 ranks &#xff0c;表示一些机械工的 能力值 。ranksi 是第 i 位机械工的能力值。能力值为 r 的机械工可以在 r * n2 分钟内修好 n 辆车。 同时给你一个整数 cars &#xff0c;表示总…...

纯前端实现 导入 与 导出 Excel

最近经常在做 不规则Excel的导入&#xff0c;或者一些普通Excel的导出&#xff0c;当前以上说的都是纯前端来实现&#xff1b;下面我们来聊聊经常用到的Excel导出与导入的实现方案&#xff0c;本文实现技术栈以 Vue2 JS 为例 导入分类&#xff1a; 调用 API 完全由后端来解析数…...

关于一次两段式提交和数据库恢复数据我的一些想法

binlog是服务层的功能&#xff0c;而redolog是innodb引擎的功能&#xff0c;binlog主要用于主从复制&#xff0c;redolog主要用做数据的恢复&#xff0c;我们必须保证binlog和redolog日志数据的一致性。恢复数据时也必须遵守此一致性。 1.如果只写一次redolog会出现什么问题&a…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...