当前位置: 首页 > news >正文

零基础教程:使用yolov8训练无人机VisDrone数据集

1.准备数据集

1.先给出VisDrone2019数据集的下载地址:

链接:https://pan.baidu.com/s/1e2Q0NgNT-H-Acb2H0Cx8sg 
提取码:31dl

2.将数据集VisDrone放在datasets目录下面

2.数据集转换程序

1.在根目录下面新建一个.py文件,取名叫做visdrone2yolov

2.复制以下代码到这个visdrone2yolov.py文件里面

import os
from pathlib import Pathdef visdrone2yolo(dir):from PIL import Imagefrom tqdm import tqdmdef convert_box(size, box):# Convert VisDrone box to YOLO xywh boxdw = 1. / size[0]dh = 1. / size[1]return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh(dir / 'labels').mkdir(parents=True, exist_ok=True)  # make labels directorypbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')for f in pbar:img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).sizelines = []with open(f, 'r') as file:  # read annotation.txtfor row in [x.split(',') for x in file.read().strip().splitlines()]:if row[4] == '0':  # VisDrone 'ignored regions' class 0continuecls = int(row[5]) - 1  # 类别号-1box = convert_box(img_size, tuple(map(int, row[:4])))lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:fl.writelines(lines)  # write label.txt
dir = Path('datasets/VisDrone')  # datasets文件夹下Visdrone2019文件夹目录
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':visdrone2yolo(dir / d)  # convert VisDrone annotations to YOLO labels

3.代码中可能需要修改的地方

将dir的值换成VisDrone数据集的相对路径

然后运行这个程序。

4.数据集转换完毕

转换之后的数据集结构如下:

3.准备配置(yaml)文件

1.复制VisDrone到同级文件夹,取名叫myVisDrone.yaml

2.配置文件的具体信息如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
# Example usage: yolo train data=VisDrone.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── VisDrone  ← downloads here (2.3 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/VisDrone  # dataset root dir
train: VisDrone2019-DET-train/images  # train images (relative to 'path')  6471 images
val: VisDrone2019-DET-val/images  # val images (relative to 'path')  548 images
test: VisDrone2019-DET-test-dev/images  # test images (optional)  1610 images# Classes
names:0: pedestrian1: people2: bicycle3: car4: van5: truck6: tricycle7: awning-tricycle8: bus9: motor

4.开始训练

1.使用yolov8s.pt进行训练

1.复制如下代码打开Terminal粘贴之后开始训练

yolo train model=yolov8s.pt data=ultralytics/cfg/datasets/myVisDrone.yaml batch=4 epochs=100 lr0=0.01

2.训练过程中遇到如下报错:OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

可能是因为进程占用的原因,重启电脑之后解决,顺利训练。

开始训练

3.网络未改进之前使用yolov8s.pt训练的效果

尝试了一下,不使用预训练权重开始训练,发现还是会默认使用yolov8n.pt

yolov8s训练最好的效果(所有标签) :map 0.412

2.使用yolov8l.pt进行训练

yolo train model=yolov8l.pt data=ultralytics/cfg/datasets/myVisDrone.yaml batch=4 epochs=100 lr0=0.01

训练效果

相关文章:

零基础教程:使用yolov8训练无人机VisDrone数据集

1.准备数据集 1.先给出VisDrone2019数据集的下载地址: 链接:https://pan.baidu.com/s/1e2Q0NgNT-H-Acb2H0Cx8sg 提取码:31dl 2.将数据集VisDrone放在datasets目录下面 2.数据集转换程序 1.在根目录下面新建一个.py文件,取名叫…...

【Mysql专题】使用Mysql做排行榜,线上实例

背景 我们这里有个需求,对存量用户的余额做排行处理,这个实现方式很多,这边介绍的是,通过Mysql直接实现,将排名也直接返回出来。 我知道大家在网上能找到一大把这种实例,我在这里可不是【重复造轮子】。我…...

matlab数据处理: cell table array+datetime

原数据文件.csv matlab xlsread(filename{i},B2:T2881) 会同于Excel最多1048576行 舍弃 a{1,i} xlsread(filename{i},‘B2:T2881’);%读取excel文件,选定区域’B2:G2881’ readcell(filename{i},Range,E2:M2881) 会全部读取 优选 对于日期 yyyy-MM-dd HH:mm:ss.000 matlab cel…...

如何应用运营商大数据精准营销?

如何应用运营商大数据精准营销? 越来越多的企业逐渐觉察到运营商大数据所带来的商业价值,精准营销也被他们用的越来越娴熟。那么,企业的大数据精准营销该如何应用呢?想必是很多资源有限的中小型公司最想了解的。 一 数据驱动运营…...

AJAX学习笔记5同步与异步理解

AJAX学习笔记4解决乱码问题_biubiubiu0706的博客-CSDN博客 示例 前端代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>演示AJAX同步和异步</title> </head> <body> <script…...

911面试

WebPack分包 webpack分包 ts泛型 ts泛型 优化if-else和switch 优化if-else 左侧固定&#xff0c;右侧自适应 左侧固定&#xff0c;右侧自适应...

【Java基础篇 | 面向对象】—— 继承

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【JavaSE_primary】 本专栏旨在分享学习JavaSE的一点学习心得&#xff0c;欢迎大家在评论区讨论&#x1f48c; 继承允许一个类继承另一个…...

DELL precision上安装nvidia A4000驱动 cuda cudnn

一、安装驱动 参考这篇文章进行安装Ubuntu安装Nvidia显卡驱动_Kevin__47的博客-CSDN博客 【出现问题】 禁用nouveau后出现黑屏&#xff0c;有几行代码&#xff0c;断线一直在闪 【解决方法】 1、参考这篇文章Ubuntu20.04安装nvidia显卡驱动并解决重启后黑屏问题_ubuntu安装…...

数据结构算法刷题(29)动态规划

思路一&#xff1a;回溯&#xff1a;按照选和不选的判断方式&#xff0c;使用回溯来解决这个问题。 class Solution: def rob(self, nums: List[int]) -> int: n len(nums) #数组的长度 def dfs(i): if i<0: #到达边界条件后 return 0 #返回最大金额是0 res max(dfs(i…...

W11下CMake MinGW配置OpenCV和Qt

&#x1f482; 个人主页:风间琉璃&#x1f91f; 版权: 本文由【风间琉璃】原创、在CSDN首发、需要转载请联系博主&#x1f4ac; 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦 前言 前几天将cuda版本的opencv给编译成功了&#xff0c;当时用的VS的MSVC&…...

反转字符串 反转字符串 || 反转字符串 |||

思想总结&#xff1a;首先将字符串转变为字符数组&#xff0c;再进行遍历并反转字符。 1.反转字符串 代码&#xff1a; class Solution {public void reverseString(char[] s) {reverse(s,0,s.length); //左闭右开}public static void reverse(char[] ch,int i,int j) { 翻转函…...

XML解析 不允许有匹配 _[xX][mM][lL]_ 的处理指令目标

以上错误是在解析xml参数时候报出的。 我这里错误的原因在于&#xff0c;<?xml version\"1.0\" encoding\"UTF-8\"?>少了个空格&#xff0c;参考下图&#xff1a; 下面一行才是对的。...

【C++进阶(五)】STL大法--list模拟实现以及list和vector的对比

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:C从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习C   &#x1f51d;&#x1f51d; list模拟实现 1. 前言2. list类的大致框架与结构…...

Docker安装RabbitMQ集群_亲测成功

先安装Docker Centos7离线安装Docker 华为云arm架构安装Docker RabbitMQ集群模式介绍 RabbitMQ集群搭建和测试总结_亲测 RabbitMQ 有三种模式&#xff1a;单机模式&#xff0c;普通集群模式&#xff0c;镜像集群模式。单机模式即单独运行一个 rabbitmq 实例&#xff0c;而…...

50道基础数据结构面试题

程序员必备的50道数据结构和算法面试题 在本文中&#xff0c;将分享一些常见的编程面试问题&#xff0c;这些问题来自于不同经验水平的程序员&#xff0c;囊括从刚大学毕业的人到具有一到两年经验的程序员。 编码面试主要包括数据结构和基于算法的问题&#xff0c;以及一些诸…...

【Linux基础】权限管理

​&#x1f47b;内容专栏&#xff1a; Linux操作系统基础 &#x1f428;本文概括&#xff1a; 用户之间的切换、sudo提权、Linux权限管理、文件访问权限的相关方法、目录权限、粘滞位等 &#x1f43c;本文作者&#xff1a; 阿四啊 &#x1f438;发布时间&#xff1a;2023.9.11 …...

C++初阶--类和对象(中)

目录 类的6个默认成员函数构造函数使用方法 析构函数使用方法 拷贝构造函数使用方法 赋值运算符重载赋值运算符重载 const成员 上篇末尾我们讲到了关于c实现栈相较于c语言在传递参数时的一些优化&#xff0c;但实际上&#xff0c;c在 初始化 清理 赋值 拷贝等方面也做了很大程…...

【MySQL系列】视图特性

「前言」文章内容大致是MySQL事务管理。 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 视图1.1 视图概念1.2 创建视图1.3 修改互相影响1.4 删除视图1.5 视图规则和限制 视图 1.1 视图概念 视图是一个虚拟表&#xff0c;其内容由查询定义同真实的表一样…...

管理类联考——数学——汇总篇——知识点突破——应用题——最值问题

⛲️ 一、考点讲解 最值问题是应用题中最难的题目&#xff0c;也是考生普遍丢分的题目。最值问题一般要结合函数来分析&#xff0c;一般结合二次函数和平均值定理求解。最值问题的求解步骤是&#xff1a;先设未知变量&#xff0c;然后根据题目建立函数表达式&#xff0c;最后利…...

学习SpringMvc第二战之【SpringMVC之综合案例】

目录 一. 参数传递 1.前期准备工作&#xff08;替换pom.xml中的部分依赖&#xff09; 1.1将log4j替换成为slf4j(将打印语句替换成为日志文件输出结果) 2.正式操作 1.基础传参 1.1创建方法&#xff0c;用于验证传参 1.2构建界面回显 1.3设置访问路径&#xff08;localho…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...