当前位置: 首页 > news >正文

Leetcode 第 362 场周赛题解

Leetcode 第 362 场周赛题解

  • Leetcode 第 362 场周赛题解
    • 题目1:2848. 与车相交的点
      • 思路
      • 代码
      • 复杂度分析
    • 题目2:2849. 判断能否在给定时间到达单元格
      • 思路
      • 代码
      • 复杂度分析
    • 题目3:2850. 将石头分散到网格图的最少移动次数
      • 思路
      • 代码
      • 复杂度分析
    • 题目4:2851. 字符串转换
      • 思路
      • 代码
      • 复杂度分析

Leetcode 第 362 场周赛题解

题目1:2848. 与车相交的点

思路

哈希。

代码

/** @lc app=leetcode.cn id=2848 lang=cpp** [2848] 与车相交的点*/// @lc code=start
class Solution
{
public:int numberOfPoints(vector<vector<int>> &nums){vector<bool> seat(101, false);for (const vector<int> &num : nums){int start = num[0], end = num[1];for (int i = start; i <= end; i++)seat[i] = true;}int count = 0;for (int i = 1; i <= 100; i++)if (seat[i])count++;return count;}
};
// @lc code=end

复杂度分析

时间复杂度:O(n),其中 n 为数组 nums 的长度。

空间复杂度:O(L),辅助数组的长度,据题意 L = 100。

题目2:2849. 判断能否在给定时间到达单元格

思路

脑筋急转弯。

带点贪心的思想。

代码

class Solution
{
public:bool isReachableAtTime(int sx, int sy, int fx, int fy, int t){if (t == 1 && sx == fx && sy == fy)return false;return abs(sx - fx) <= t && abs(sy - fy) <= t;}
};

复杂度分析

时间复杂度:O(1)。

空间复杂度:O(1),没有辅助变量。

题目3:2850. 将石头分散到网格图的最少移动次数

思路

暴力列举全排列,每次计算出一个曼哈顿距离,更新最小值即为最小移动次数。

代码

/** @lc app=leetcode.cn id=2850 lang=cpp** [2850] 将石头分散到网格图的最少移动次数*/// @lc code=start
class Solution
{
public:int minimumMoves(vector<vector<int>> &grid){int m = grid.size(), n = m ? grid[0].size() : 0; // m = n = 3// 所有移走的石子个数 = 所有移入的石子个数(grid[i][j] = 0)vector<pair<int, int>> from; // 移走石子坐标数组vector<pair<int, int>> to;   // 移入石子坐标数组// 构建 from 和 to 数组for (int i = 0; i < 3; i++)for (int j = 0; j < 3; j++){if (grid[i][j] > 1){// 有 grid[i][j] - 1 个可以移走的石子for (int k = 0; k < grid[i][j] - 1; k++)from.push_back(make_pair(i, j));}else if (grid[i][j] == 0)to.push_back(make_pair(i, j));}// 枚举 from 的全部排列可能,与 to 匹配,求 from[i] 和 to[i] 的曼哈顿距离之和,最小值即为答案int minCount = __INT_MAX__; // 最少移动次数// 使用 next_permutation 枚举全排列必须先对数组进行排序sort(from.begin(), from.end());do{int count = 0;for (int i = 0; i < from.size(); i++){// 计算曼哈顿距离count += abs(from[i].first - to[i].first) + abs(from[i].second - to[i].second);}minCount = min(minCount, count); // 更新答案} while (next_permutation(from.begin(), from.end()));return minCount;}
};
// @lc code=end

复杂度分析

时间复杂度:O(m×n×(m×n)!),使用 STL 函数 next_permutation 进行全排列的时间复杂度为O((m×n)!),循环内计算单次计算曼哈顿距离的时间复杂度为O(m×n),其中 m、n 分别为矩阵 gird 的长度和宽度,m = n = 3。

空间复杂度:O(mn),为辅助数组 from 和 to 的空间,其中 m、n 分别为矩阵 gird 的长度和宽度,m = n = 3。

题目4:2851. 字符串转换

超出能力范围。

思路

矩阵快速幂优化 DP(矩阵快速幂 + 动态规划 + KMP)

视频讲解:

https://www.bilibili.com/video/BV1U34y1N7Pe/?vd_source=df165d34990cd0aa2cacb2c452e99aad

代码

/** @lc app=leetcode.cn id=2851 lang=cpp** [2851] 字符串转换*/// @lc code=start// 矩阵快速幂优化 DPclass Solution
{
public:int numberOfWays(string s, string t, long long k){int n = s.size();int c = kmp_search(s + s.substr(0, n - 1), t);vector<vector<long long>> m = {{c - 1, c},{n - c, n - 1 - c}};m = pow(m, k);return m[0][s != t];}private:// KMP 模板vector<int> calc_max_match(string s){vector<int> match(s.size());int c = 0;for (int i = 1; i < s.size(); i++){char v = s[i];while (c && s[c] != v)c = match[c - 1];if (s[c] == v)c++;match[i] = c;}return match;}// KMP 模板// 返回 text 中出现了多少次 pattern(允许 pattern 重叠)int kmp_search(string text, string pattern){vector<int> match = calc_max_match(pattern);int match_cnt = 0, c = 0;for (int i = 0; i < text.size(); i++){char v = text[i];while (c && pattern[c] != v)c = match[c - 1];if (pattern[c] == v)c++;if (c == pattern.size()){match_cnt++;c = match[c - 1];}}return match_cnt;}const long long MOD = 1e9 + 7;// 矩阵乘法vector<vector<long long>> multiply(vector<vector<long long>> &a, vector<vector<long long>> &b){vector<vector<long long>> c(2, vector<long long>(2));for (int i = 0; i < 2; i++)for (int j = 0; j < 2; j++)c[i][j] = (a[i][0] * b[0][j] + a[i][1] * b[1][j]) % MOD;return c;}// 矩阵快速幂vector<vector<long long>> pow(vector<vector<long long>> &a, long long n){vector<vector<long long>> res = {{1, 0}, {0, 1}};for (; n; n /= 2){if (n % 2)res = multiply(res, a);a = multiply(a, a);}return res;}
};
// @lc code=end

复杂度分析

时间复杂度:O(n+logk),其中 n 为字符串 s 的长度。

空间复杂度:O(n),其中 n 为字符串 s 的长度。

相关文章:

Leetcode 第 362 场周赛题解

Leetcode 第 362 场周赛题解 Leetcode 第 362 场周赛题解题目1&#xff1a;2848. 与车相交的点思路代码复杂度分析 题目2&#xff1a;2849. 判断能否在给定时间到达单元格思路代码复杂度分析 题目3&#xff1a;2850. 将石头分散到网格图的最少移动次数思路代码复杂度分析 题目4…...

蓝桥杯官网练习题(0的个数)

问题描述 给定一个正整数 n &#xff0c;请问 n 的十进制表示中末尾总共有几个 0 &#xff1f; 输入格式 输入一行包含一个正整数 n。 输出格式 输出一个整数&#xff0c;表示答案。 样例输入 20220000样例输出 4评测用例规模与约定 对于所有评测用例&#xff0c;1 &l…...

计算线段上距离线段外某一点最近的点

一、问题 已知 p 0 = ( x 0 , y 0 ) p_0=(x_0, y_0) p...

港联证券股票分析:经济拐点显现 积极提升仓位

港联证券指出&#xff0c;商场底部上升的方向不变&#xff0c;当时稳增加和活跃资本商场的活跃方针仍在持续落地&#xff0c;一起也看到了一些经济数据边沿企稳的迹象&#xff0c;跟着方针作用的进一步闪现&#xff0c;商场情绪有望持续好转&#xff0c;上市公司基本面也有望得…...

不同的图像质量评价指标(IQA)

一、NR-IQA 这是一种方法不是指标 “Non-Reference Image Quality Assessment”&#xff08;NR-IQA&#xff09;是一种图像质量评价&#xff08;Image Quality Assessment, IQA&#xff09;方法&#xff0c;通常用于评估图像的质量&#xff0c;而无需使用参考图像&#xff08;…...

linux命令-tar 命令

tar 命令 tar 命令一般用来打包文件 ,文件夹 , 方便传输使用. tar命令是在Linux和UNIX系统上用于创建、查看和提取tar归档文件的工具。它通常与gzip一起使用&#xff0c;以便在创建归档文件时进行压缩或解压缩。 -c: 创建归档文件 -x: 提取文件 -z: 告诉 tar 命令使用 gzip …...

selenium元素定位---ElementClickInterceptedException(元素点击交互异常)解决方法

1、异常原因 在编写ui自动化时&#xff0c;执行报错元素无法点击&#xff1a;ElementClickInterceptedException 具体报错&#xff1a;selenium.common.exceptions.ElementClickInterceptedException: Message: element click intercepted: Element <span class"el-c…...

05_css选择器的使用

一、css选择器的类型 1、标签选择器 用法&#xff1a;直接写 写标签名&#xff1a;标签名{} 示例&#xff1a; <!-- <!DOCTYPE html --> <html><head><meta charset"utf-8"><title>标签选择器</title><style type"te…...

跨平台游戏引擎 Axmol-2.0.0 正式发布

下载 https://github.com/axmolengine/axmol/releases/tag/v2.0.0 更新日志 添加实验性的 WebAssembly 构建支持(WebGL 2.0)&#xff0c;由 nowasm 贡献 已知问题 WebGL context lost 尚未处理 部署在 github pages 的 demo 可快速预览&#xff0c;注意&#xff1a;由于 Git…...

面试总结归纳

面试总结 注&#xff1a;循序渐进&#xff0c;由点到面&#xff0c;从技术点的理解到项目中的使用&#xff0c; ​ 要让面试官知道&#xff0c;我所知道的要比面试官更多 一、Mybatis 为ORM半持久层框架&#xff0c;它封装了JDBC&#xff0c;开发时只需要关注sql语句就可以了…...

【刷题篇】贪心算法(一)

文章目录 分割平衡字符串买卖股票的最佳时机Ⅱ跳跃游戏钱币找零 分割平衡字符串 class Solution { public:int balancedStringSplit(string s) {int lens.size();int cnt0;int balance0;for(int i0;i<len;i){if(s[i]R){balance--;}else{balance;}if(balance0){cnt;}}return …...

从维基百科通过关键字爬取指定文本内容

通过输入搜索的关键字&#xff0c;和搜索页数范围&#xff0c;爬出指定文本内内容并存入到txt文档。代码逐行讲解。 使用re、res、BeautifulSoup包读取&#xff0c;代码已测&#xff0c;可以运行。txt文档内容不乱码。 import re import requests from bs4 import BeautifulS…...

pytorch代码实现之SAConv卷积

SAConv卷积 SAConv卷积模块是一种精度更高、速度更快的“即插即用”卷积&#xff0c;目前很多方法被提出用于降低模型冗余、加速模型推理速度&#xff0c;然而这些方法往往关注于消除不重要的滤波器或构建高效计算单元&#xff0c;反而忽略了特征内部的模式冗余。 原文地址&am…...

一文解析-通过实例讲解 Linux 内存泄漏检测方法

一、mtrace分析内存泄露 mtrace&#xff08;memory trace&#xff09;&#xff0c;是 GNU Glibc 自带的内存问题检测工具&#xff0c;它可以用来协助定位内存泄露问题。它的实现源码在glibc源码的malloc目录下&#xff0c;其基本设计原理为设计一个函数 void mtrace ()&#x…...

Spring Boot常用的参数验证技巧和使用方法

简介 Spring Boot是一个使用Java编写的开源框架&#xff0c;用于快速构建基于Spring的应用程序。在实际开发中&#xff0c;经常需要对输入参数进行验证&#xff0c;以确保数据的完整性和准确性。Spring Boot提供了多种方式来进行参数验证&#xff0c;并且可以很方便地集成到应…...

手机+卫星的科技狂想

最近硬件圈最火热的话题之一&#xff0c;应该就是突然上线、遥遥领先的华为Mate 60 Pro了。 其中&#xff0c;CPU和类5G网速是怎么实现的&#xff0c;是大家特别关注的问题。相比之下&#xff0c;卫星通话这个功能&#xff0c;讨论度就略低一些&#xff08;没有说不火的意思&am…...

便捷查询中通快递,详细物流信息轻松获取

在如今快节奏的生活中&#xff0c;快递已成为人们生活中不可或缺的一部分。然而&#xff0c;快递查询却常常让人头疼&#xff0c;因为需要分别在不同的快递公司官网上进行查询&#xff0c;耗费时间和精力。为了解决这个问题&#xff0c;固乔科技推出了一款便捷的快递查询助手&a…...

ARM接口编程—Interrupt(exynos 4412平台)

CPU与硬件的交互方式 轮询 CPU执行程序时不断地询问硬件是否需要其服务&#xff0c;若需要则给予其服务&#xff0c;若不需要一段时间后再次询问&#xff0c;周而复始中断 CPU执行程序时若硬件需要其服务&#xff0c;对应的硬件给CPU发送中断信号&#xff0c;CPU接收到中断信号…...

适用于Linux的Windows子系统(PHP搭建lmap、redis、swoole环境)

目录 前言 一、Windows安装Linux子系统 二、Ubuntu搭建PHP开发环境 1.PHP 安装 2.Apache2 安装 3.MySQL安装 4.Redis安装 5.Swoole安装 总结 前言 系列分为三章&#xff08;从安装到项目使用&#xff09;&#xff1a; 一、适用于Linux的Windows子系统&#xff08;系统安装步骤…...

Vue3+Ts+Vite项目(第十二篇)——echarts安装与使用,vue3项目echarts组件封装

概述 技术栈&#xff1a;Vue3 Ts Vite Echarts 简介&#xff1a; 图文详解&#xff0c;教你如何在Vue3项目中引入Echarts&#xff0c;封装Echarts组件&#xff0c;并实现常用Echarts图例 文章目录 概述一、先看效果1.1 静态效果1.2 动态效果 二、话不多数&#xff0c;引入 …...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...