当前位置: 首页 > news >正文

【易盾点选】

拿官网的点选做个例子吧,比较省事,水一篇~
在这里插入图片描述

官网的接口目前都改成V3了,多了个dt参数,以及加密的一个函数也变动了下

点选坐标在这,加密函数未变,用逗号拼接

在这里插入图片描述

整个加密里的函数变了,直接重新扣补补就完事

在这里插入图片描述

完事后呢,这边的轨迹稍微恶心点,必须经过你点击的坐标位置来生成轨迹,具体咋实现可以问问gpt

在这里插入图片描述

在这里插入图片描述

然后主要就是文字坐标的确定了,可以打码,可以训练模型

模型主要有两步,一个是目标检测,一个是文字识别,我用的是yolo5的目标检测,标注个几十张就能用了,很强大

在这里插入图片描述

然后文字识别可以用这个,标注,改参数直接跑

https://github.com/nickliqian/cnn_captcha

在这里插入图片描述

最终训练到90%的成功率,用了13w样本
在这里插入图片描述

然后整合再一起,测试下,基本上能用了

在这里插入图片描述

相关文章:

【易盾点选】

拿官网的点选做个例子吧,比较省事,水一篇~ ​ 官网的接口目前都改成V3了,多了个dt参数,以及加密的一个函数也变动了下 点选坐标在这,加密函数未变,用逗号拼接 整个加密里的函数变了,直接重新…...

vue中打印指定dom元素

和window.print()效果一样,调出打印窗口,只是当前使用的插件是vue-print-nb 官网地址:vue-print-nb vue2中使用 安装插件 npm install vue-print-nb --save导入插件 import Print from vue-print-nb // 全局使用 Vue.use(Print);//or// 单…...

OpenCV(三十六):霍夫直线检测

1.检测直线的霍夫变换原理 2.检测直线函数HoughLines() 检测直线流程: Step1:将参数空间的坐标轴离散化。 Step2:将图像中每个非0像素通过映射关系求取在参数空间通过的方格 Step3:统计参数空间内每个方格出现的次数,选取次数大于某一值的方格作为表示直线的方格…...

文心一言 VS 讯飞星火 VS chatgpt (91)-- 算法导论8.3 4题

四、用go语言,说明如何在 O(n) 时间内,对 0 到 n 3 − 1 n^3-1 n3−1 区间内的n个整数进行排序。 文心一言: 在 O(n) 时间内对 0 到 n^3-1 区间内的 n 个整数进行排序,可以使用基数排序(Radix Sort)算法…...

keep-alive缓存三级及三级以上路由

需求需要缓存这个出入记录,当tab切换时不重新加载,当刷新页面时,或把这个关闭在重新打开时重新加载如图: (我这里用的是芋道源码的前端框架) keep-alive 1、include 包含页面组件name的这些组件页面,会被…...

vite vue项目 运行时 \esbuild\esbuild.exe 缺失 错误码 errno: -4058, code: ‘ENOENT‘,

vite vue项目运行 npm run dev 报错某个模块启动文件丢失信息 D:\PengYe_code\2\vite-vue3-admin>npm run dev> vite-vue3-admin1.0.2 dev > vitenode:events:504throw er; // Unhandled error event^Error: spawn D:\PengYe_code\2\vite-vue3-admin\node_modules\vi…...

favicon.ico网站图标不显示问题 Failed to load resource: net::ERR_FILE_NOT_FOU

上述问题主要由于网站的小图标无法显示导致的&#xff1a;可以检查如下部分&#xff1a; 1、是否存在一个favicon.ico文件在根目录下 2、如果存在&#xff0c;看是否写的相对路径&#xff1a;改为绝对路径 <link rel"shortcut icon" href"../favicon.ico&quo…...

微服务·架构组件之服务注册与发现-Nacos

微服务组件架构之服务注册与发现之Nacos Nacos服务注册与发现流程 服务注册&#xff1a;Nacos 客户端会通过发送REST请求的方式向Nacos Server注册自己的服务&#xff0c;提供自身的元数据&#xff0c;比如ip地址、端口等信息。 Nacos Server接收到注册请求后&#xff0c;就会…...

Linux驱动【day2】

mychrdev.c: #include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include<linux/uaccess.h> #include<linux/io.h> #include"head.h" unsigned int major; // 保存主设备号 char kbuf[128]{0}; unsigned int…...

4、Nginx 配置实例-反向代理

文章目录 4、nginx 配置实例-反向代理4.1 反向代理实例一4.1.1 实验代码 4.3 反向代理实例二4.3.1 实验代码 【尚硅谷】尚硅谷Nginx教程由浅入深 志不强者智不达&#xff1b;言不信者行不果。 4、nginx 配置实例-反向代理 4.1 反向代理实例一 实现效果&#xff1a;使用 nginx…...

2023年世界机器人大会回顾

1、前记&#xff1a; 本次记录是我自己去世界机器人博览会参观的一些感受&#xff0c;所有回顾为个人感兴趣部分的机器人产品分享。整个参观下来最大的感受就是科学技术、特别是机器人技术和人工智能毫无疑问地、广泛的应用在我们日常生活的方方面面&#xff0c;在安全巡检、特…...

Mac系统 AndroidStudio Missing essential plugin:org.jetbrains.android报错

打开Android Studio,提示 Missing essential plugin:org.jetbrains.android错误&#xff0c;产生的原因是Kotlin被禁用。 解决的方法是删除disabled_plugins.txt&#xff0c;Mac OS对应的路径为&#xff1a; /Users/xzh/Library/Application Support/Google/AndroidStudio202…...

读书笔记:多Transformer的双向编码器表示法(Bert)-1

多Transformer的双向编码器表示法 Bidirectional Encoder Representations from Transformers&#xff0c;即Bert&#xff1b; 本笔记主要是对谷歌Bert架构的入门学习&#xff1a; 介绍Transformer架构&#xff0c;理解编码器和解码器的工作原理&#xff1b;掌握Bert模型架构…...

第二证券:股利支付率和留存收益率的关系?

股利付出率和留存收益率是股票出资中非常重要的目标&#xff0c;它们可以反映公司的盈余才能和未来开展的潜力。那么&#xff0c;二者之间究竟有什么联系呢&#xff1f; 一、股利付出率和留存收益率的定义 股利付出率是指公司向股东分配的股息占当期净利润的比例&#xff0c;通…...

煤矿虚拟仿真 | 采煤工人VR虚拟现实培训系统

随着科技的发展&#xff0c;虚拟现实(VR)技术已经逐渐渗透到各个行业&#xff0c;其中包括煤矿行业。VR技术可以为煤矿工人提供一个安全、真实的环境&#xff0c;让他们在虚拟环境中进行实际操作和培训&#xff0c;从而提高他们的技能水平和安全意识。 由广州华锐互动开发的采煤…...

buuctf crypto 【[GXYCTF2019]CheckIn】解题记录

1.打开文件&#xff0c;发现密文 2.一眼base64&#xff0c;解密一下 3.解密后的字符串没有什么规律&#xff0c;看了看大佬的wp&#xff0c;是rot47加密&#xff0c;解密一下&#xff08;ROT5、ROT13、ROT18、ROT47位移编码&#xff09;...

微服务05-Docker基本操作

Docker的定义 1.什么是Docker Docker是一个快速交付应用、运行应用的技术&#xff1a; 可以将程序及其依赖、运行环境一起打包为一个镜像&#xff0c;可以迁移到任意Linux操作系统运行时利用沙箱机制形成隔离容器&#xff0c;各个应用互不干扰启动、移除都可以通过一行命令完…...

OpenHarmony创新赛|赋能直播第三期

开放原子开源大赛OpenHarmony创新赛赋能直播间持续邀请众多技术专家一起分享应用开发技术知识&#xff0c;本期推出OpenHarmony应用开发之音视频播放器和三方库的使用和方法&#xff0c;助力开发者掌握多媒体应用技术的开发能力和使用三方库提升应用开发的效率和质量&#xff0…...

docker镜像详解

目录 什么是docker镜像镜像相关命令docker pulldocker imagesdocker searchdocker rmi导出 / 导入镜像 镜像分层镜像摘要镜像摘要的作用分发散列值 什么是docker镜像 Docker镜像是Docker容器的基础组件&#xff0c;它包含了运行一个应用程序所需的一切&#xff0c;包括代码、运…...

二叉树的顺序结构以及堆的实现——【数据结构】

W...Y的主页 &#x1f60a; 代码仓库分享 &#x1f495; 上篇文章&#xff0c;我们认识了什么是树以及二叉树的基本内容、表示方法……接下来我们继续来深入二叉树&#xff0c;感受其中的魅力。 目录 二叉树的顺序结构 堆的概念及结构 堆的实现 堆的创建 堆的初始化与…...

手写一个摸鱼神器:使用python手写一个看小说的脚本,在ide中输出小说内容,同事直呼“还得是你”

文章目录 一、准备python环境二、分析小说网的章节目录三、分析小说网的章节内容四、编写python脚本五、验证一下吧 一、准备python环境 windows从0搭建python3开发环境与开发工具 Python爬虫基础&#xff08;一&#xff09;&#xff1a;urllib库的使用详解 Python爬虫基础&a…...

【Python 实战】---- 实现批量图片的切割

1. 需求场景 在实际开发中&#xff0c;我们会遇到一种很无聊&#xff0c;但是又必须实现的需求&#xff0c;就是比如协议、大量的宣传页面、大量的静态介绍页面、或者大量静态页面&#xff0c;但是页面高度很高&#xff0c;甚至高度可能会达到50000px&#xff0c;但是为了渲染…...

MAYA粒子基础_场

重力场 牛顿场 径向场 均匀场和重力场的区别 空气场 推动物体 阻力场 推动物体 涡流场 湍流场 体积轴场...

趣解设计模式之《我买了宝马,为啥不让我停这?》

〇、小故事 我们怎么识别一辆汽车是宝马品牌的汽车呢&#xff1f;虽然宝马汽车车辆型号非常的多&#xff0c;而且外型也各不相同&#xff0c;但是只要是宝马品牌的汽车&#xff0c;它的车头一定会有宝马汽车的logo&#xff0c;那么这个就是大家最直观去确认一辆车是不是宝马牌…...

MyBatis Plus 中 LocalDateTime 引发的一些问题和解决办法

简介 在使用 MyBatis Plus 进行数据库操作时&#xff0c;我们经常会遇到处理日期时间类型的需求。然而&#xff0c;在某些情况下&#xff0c;使用 LocalDateTime 类型可能会引发一些问题。本文将详细介绍这些问题&#xff0c;并提供相应的解决办法。 问题描述&#xff1a; 1…...

谁懂啊!自制的科普安全手册居然火了

自制的科普安全手册居然火了 谁懂啊&#xff01; 嗨嗨嗨&#xff01;小仙女们&#xff0c;有没有见过这样的可以翻页的电子安全手册呢&#xff1f;自己随手就能轻松制作手册&#xff0c;结果一晚浏览量这么多&#xff01;这可真是让人又惊又喜啊&#xff01;快来分享一下我的喜…...

强化学习-论文调研-泛化性能力度量

1.[ICML2019]Quantifying Generalization in Reinforcement Learning ​ 文章提出16000多个单智能体闯关游戏CoinRun&#xff0c;通过智能体在分割开的训练环境和测试环境上表现的性能作为RL泛化性的度量。具体而言作者通过”奔跑硬币泛化曲线“ &#xff08;CoinRun Gener…...

CSS中图片旋转超出父元素解决办法

下面的两种解决办法都会导致图片缩小&#xff0c;可以给图片进行初始化的宽高设置 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge">…...

QML、C++ 和 JS 三者之间的交互

QML、C++ 和 JS 三者之间的交互是 Qt Quick 应用开发的核心。以下是它们之间交互的常见方式: 从 QML 调用 C++ 函数要从 QML 调用 C++ 函数,您可以使用 Qt 的 QML 注册机制,例如 qmlRegisterType,将 C++ 类注册为 QML 类型。 C++ 代码: #include <QGuiApplication>…...

ProEasy机器人:TCP无协议通讯(socket通讯)时打印log日志

打印日志需要调用lua中的io相关文件函数与os相关时间函数&#xff0c;代码如下 --------TCP无协议视觉通讯------- function open_client_Vision() --连接视觉服务器 打开以太网作为客户端 repeat FreePort.ECM_CloseAll() --关闭所有链接 …...

做网站 域名如何要回/代运营哪家公司最靠谱

python导出pdf&#xff0c;参考诸多资料&#xff0c;发现pdfkit是效果比较好的。故下载后进行了实现&#xff0c;多次失败后终于成功了&#xff0c;现将其中经验总结如下&#xff1a; """ 需要安装pdfkit&#xff0c;另外需要安装可执行文件wkhtmltopdf.exe&a…...

怎样自己做网站推广/seo技术分享

教育 -金融工程学-新-章节资料考试资料-宁波财经学院【】 1.1 随堂测试 1、【多选题】从交易层面来看&#xff0c;属于零和游戏的有&#xff1a; A、股票 B、期货 C、期权 D、互换 参考资料【 】 2、【判断题】远期合约出现的比期货合约早。 A、正确 B、错误 参考资料【 】 3、…...

万宁网站建设/b站推广app大全

shell 在计算机科学中&#xff0c;Shell俗称壳&#xff08;用来区别于核&#xff09;&#xff0c;是指“提供使用者使用界面”的软件&#xff08;命令解析器&#xff09;。它类似于DOS下的command和后来的cmd.exe。它接收用户命令&#xff0c;然后调用相应的应用程序。 同时它又…...

有赞网站开发/推广app最快的方法

Feign简介 Feign是Netflix开发的声明式&#xff0c;模板化的HTTP客户端&#xff0c;其灵感来自Retrofit,JAXRS-2.0以及WebSocket.Feign可帮助我们更加便捷&#xff0c;优雅的调用HTTP API。在SpringCloud中&#xff0c;使用Feign非常简单——创建一个接口&#xff0c;并在接口上…...

网站开发文档管理工具/网站排名优化方案

第一步&#xff1a;先安装pydevpyDev&#xff1a;http://www.pydev.org/updates 第二步&#xff1a;配置python解释器路径安装好pydev后&#xff0c; 需要配置Python解释器。在Eclipse菜单栏中&#xff0c;点击Windows ->Preferences. 在对话框中&#xff0c;点击pyDev-&…...

网站开发与维护是干什么的/小视频网站哪个可以推广

linux下mysql 启动问题刚开始学mysql时都是用redhat自带的。启动是什么 /rc.d/init.d/ start这很简单&#xff0c;但是后来越学越多&#xff0c;系统自带的mysql&#xff0c;有的是版本太低&#xff0c;有的是与自己想要装的web服务需要的低版本的mysql后来自己学着以tar的方式…...