当前位置: 首页 > news >正文

基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

%EM算法收敛所需的迭代
nIter = 1; 
Yp    = Y(:,1:L_polit,:);     %与导频序列相对应的部分
qmse1  = zeros(1,len); %EM算法的MSE
for k=1:len %计算所有SNR的EM算法的MSEG0   = zeros(Nant,Nuser); %初始状态mIu0 = zeros(Nuser,N);   sgm0 = zeros(Nuser,Nuser);  for i=1:nIterG0 = (Yp(:,:,k)*Polits' + Y(:,L_polit:N-1,k)*mIu0(:,L_polit:N-1)')/ (Polits*Polits' + mIu0(:,L_polit:N-1)*mIu0(:,L_polit:N-1)' + (N-L_polit)*sgm0);for j=1:NmIu0(:,j) = (G0'*G0 + sigmaNu(k)*eye(Nuser))\(G0'*Y(:,j,k));endsgm0 = sigmaNu(k)*eye(Nuser)/(G0'*G0 + sigmaNu(k)*eye(Nuser));endqmse1(k) = trace(abs((G-G0)'*(G-G0)))/mean(beta2);  
endnIter = 5; 
Yp    = Y(:,1:L_polit,:);     %与导频序列相对应的部分
qmse2  = zeros(1,len); %EM算法的MSE
for k=1:len %计算所有SNR的EM算法的MSEG0   = zeros(Nant,Nuser); %初始状态mIu0 = zeros(Nuser,N);   sgm0 = zeros(Nuser,Nuser);  for i=1:nIterG0 = (Yp(:,:,k)*Polits' + Y(:,L_polit:N-1,k)*mIu0(:,L_polit:N-1)')/ (Polits*Polits' + mIu0(:,L_polit:N-1)*mIu0(:,L_polit:N-1)' + (N-L_polit)*sgm0);for j=1:NmIu0(:,j) = (G0'*G0 + sigmaNu(k)*eye(Nuser))\(G0'*Y(:,j,k));endsgm0 = sigmaNu(k)*eye(Nuser)/(G0'*G0 + sigmaNu(k)*eye(Nuser));endqmse2(k) = trace(abs((G-G0)'*(G-G0)))/mean(beta2);  
end
61

4.算法理论概述

       基于大规模MIMO通信系统的半盲信道估计算法涉及多个步骤,其原理和数学公式概括如下:

        首先,MIMO系统需要发送已知的训练序列,在接收端进行初始的信道估计。当发送有用的信息数据时,接收端会利用初始的信道估计结果进行判决更新,以完成实时的信道估计。

        在此基础上,半盲信道估计算法结合了盲估计和基于训练序列估计这两种方法的特点。一般来讲,通过设计训练序列或在数据中周期性地插入导频符号来进行估计是一种常见的方式。

半盲信道估计的数学公式可以表示为:

H^S = (1/T) * Σ_t=1^T [y_t * conj(H_t) / (1 + Σ_i=1^L * conj(H_i) * y_t * conj(H_i)^*)] (5)

       其中,H^S是大规模MIMO信道的估计结果,y_t是接收信号向量,conj(H_t)是H_t的共轭转置,L是导频符号的数量,conj(H_i)^*是H_i的共轭转置的复数共轭。

        这个公式基于盲估计的思想,利用了调制信号本身固有的、与具体承载信息比特无关的一些特征,或是采用了判决反馈的方法来进行信道估计。同时,通过在发送的有用数据中插入已知的导频符号,可以得到导频位置的信道估计结果,进而利用导频位置的信道估计结果,通过内插得到有用数据位置的信道估计结果。

        因此,半盲信道估计算法不仅利用了基于训练序列的初始估计和实时判决更新,也结合了盲估计的方法特点,可以更加准确地估计大规模MIMO信道。

       需要注意的是,半盲信道估计算法在实际应用中还需要考虑其他因素,如训练序列设计、导频符号的选择和插入、判决反馈机制的实现等。这些因素都可能对算法的性能和实际应用产生影响。因此,在实际应用中需要根据具体情况进行算法优化和调整。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 %EM算法收敛所需的迭代 nIter 1; Yp Y(:,1:L_polit,:); %与导频序列相对应的部分 q…...

自然语言处理学习笔记(九)———— OVV Recall Rate与 IV Recall Rate

目录 1.OVV Recall Rate 2. IV Recall Rate 1.OVV Recall Rate OOV指的是“未登录词”(Out Of Vocabulary),或者俗称的“新词”,也即词典未收录的词汇。如何准确切分00V,乃至识别其语义,是整个NLP领域的核…...

区块链正在开启一场回归商业,融合商业的新发展

对于区块链来讲,它其实同样在延续着这样一种发展路径。   正如上文所说,区块链正在开启一场回归商业,融合商业的新发展。   而欲要实现这一点,区块链就是要从底层算法,底层数据传输,底层体系的打造着手…...

【软考】系统集成项目管理工程师(三)信息系统集成专业技术知识③

一、云计算 1、定义 通过互联网来提供大型计算能力和动态易扩展的虚拟化资源;云是网络、互联网的一种比喻说法。是一种大集中的服务模式。 2、特点 (1)超大规模(2)虚拟化(3)高可扩展性&…...

js中如何判断一个对象是否为空对象?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用 Object.keys()⭐ 使用 for...in 循环⭐ 使用 JSON.stringify()⭐ 使用 ES6 的 Object.getOwnPropertyNames()⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带…...

Linux SysRq 简介

文章目录 1. 前言2. 背景3. Linux SysRq3.1 SysRq 简介3.1.1 SysRq 初始化 3.2 通过 procfs 发起 SysRq 请求3.2.1 修改内核日志等级3.2.1.1 触发3.2.1.2 实现简析 3.2.2 手动触发内核 panic3.2.2.1 触发3.2.2.2 实现简析3.2.2.3 应用场景 3.2.3 其它 SysRq 请求 3.3 通过 特殊…...

Mac版本破解Typora,解决Mac安装软件的“已损坏,无法打开。 您应该将它移到废纸篓”问题

一、修改配置文件 首先去官网选择mac版本下载安装 typora下载 然后打开typora包内容找到 /Applications/Typora.app/Contents/Resources/TypeMark/ 编辑器打开上面文件夹,这里我拉到vscode 找到page-dist/static/js/Licen..如下图 输入 hasActivated"…...

elementui el-dialog 动态生成多个,点击按钮打开对应的 dialog

业务场景: 根据后端返回的数据,动态生成表单,返回的数据中会有表单字段的类型,如果单选、多选、富文本,其它的属性还好说,重点说在富文本,因为我想通过 dialog 弹窗的方式,进行富文…...

自己开发一个接口文档页面html

演示效果 具体代码如下 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>框架框架文档页面</…...

信息化发展28

区块链概述 区块链技术具有多中心化存储、隐私保护、防篡改等特点&#xff0c; 提供了开放、分散和容错的事务机制&#xff0c; 成为新一代匿名在线支付、汇款和数字资产交易的核心&#xff0c; 被广泛应用于各大交易平台&#xff0c; 为金融、监管机构、科技创新、农业以及政…...

React 入门实例教程

目录 一、HTML 模板 二、ReactDOM.render() 三、JSX 语法 四、组件 五、this.props.children 六、PropTypes 七、获取真实的DOM节点 八、this.state 九、表单 十、组件的生命周期 constructor() componentWillMount() render() componentDidMount() 组件生命周期…...

Window安装Node.js npm appium Appium Desktop

Window安装Node.js npm appium appium Desktop 1.安装nodejs 参考链接&#xff1a; https://blog.csdn.net/weixin_42064877/article/details/131610918 1)打开浏览器&#xff0c;并前往 Node.js 官网 https://nodejs.org/ ↗。 2)在首页中&#xff0c;您可以看到当前 Node.…...

Pytorch intermediate(三) RNN分类

使用RNN对MNIST手写数字进行分类。RNN和LSTM模型结构 pytorch中的LSTM的使用让人有点头晕&#xff0c;这里讲述的是LSTM的模型参数的意义。 1、加载数据集 import torch import torchvision import torch.nn as nn import torchvision.transforms as transforms import torc…...

vue2+webpack升级vue3+vite,修改插件兼容性bug

同学们可以私信我加入学习群&#xff01; 前言 在前面使用electronvue3的过程中&#xff0c;已经验证了历史vue2代码vue3混合开发的模式。 本次旧项目vue框架整体升级中&#xff0c;同事已经完成了vue3、pinia、router等基础框架工具的升级。所以我此次记录的主要是vite打包工…...

案例实战-Spring boot Web

准备工作 需求&环境搭建 需求&#xff1a; 部门管理&#xff1a; 查询部门列表 删除部门 新增部门 修改部门 员工管理 查询员工列表&#xff08;分页、条件&#xff09; 删除员工 新增员工 修改员工 环境搭建 准备数据库表&#xff08;dept、emp&#xff09; -- 部门管理…...

Spring6.1之RestClient分析

文章目录 1 RestClient1.1 介绍1.2 准备项目1.2.1 pom.xml1.2.2 创建全局 RestClient1.2.3 Get接收数据 retrieve1.2.4 结果转换 Bean1.2.5 Post发布数据1.2.6 Delete删除数据1.2.7 处理错误1.2.8 Exchange 方法 1 RestClient 1.1 介绍 Spring 框架一直提供了两种不同的客户端…...

冒泡排序、选择排序、插入排序、希尔排序

冒泡排序 基本思想 代码实现 # 冒泡排序 def bubble_sort(arr):length len(arr) - 1for i in range(length):flag Truefor j in range(length - i):if arr[j] > arr[j 1]:temp arr[j]arr[j] arr[j 1]arr[j 1] tempflag Falseprint(f第{i 1}趟的排序结果为&#…...

OpenCV(二十三):中值滤波

1.中值滤波的原理 中值滤波&#xff08;Median Filter&#xff09;是一种常用的非线性图像滤波方法&#xff0c;用于去除图像中的椒盐噪声等离群点。它的原理是基于邻域像素值的排序&#xff0c;并将中间值作为当前像素的新值。 2.中值滤波函数 medianBlur() void cv::medianBl…...

Prompt Tuning训练过程

目录 0. 入门 0.1. NLP发展的四个阶段&#xff1a; Prompt工程如此强大&#xff0c;我们还需要模型训练吗&#xff1f; - 知乎 Prompt learning系列之prompt engineering(二) 离散型prompt自动构建 Prompt learning系列之训练策略篇 - 知乎 ptuning v2 的 chatglm垂直领域训练记…...

装备制造企业是否要转型智能装备后服务型公司?

一、从制造到服务&#xff1a;装备制造企业的转型之路 装备制造企业作为国家经济发展的重要支柱&#xff0c;面临着日益激烈的市场竞争。在这样的背景下&#xff0c;越来越多的装备制造企业开始意识到&#xff0c;通过转型为智能装备后服务型公司&#xff0c;可以更好地满足客…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

在树莓派上添加音频输入设备的几种方法

在树莓派上添加音频输入设备可以通过以下步骤完成&#xff0c;具体方法取决于设备类型&#xff08;如USB麦克风、3.5mm接口麦克风或HDMI音频输入&#xff09;。以下是详细指南&#xff1a; 1. 连接音频输入设备 USB麦克风/声卡&#xff1a;直接插入树莓派的USB接口。3.5mm麦克…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...