当前位置: 首页 > news >正文

Safety-Gym环境配置与安

官网:

https://github.com/openai/safety-gym

https://github.com/openai/safety-starter-agents

一、安装依赖环境配置

建议使用python 3.7及以下环境,因为官方的safety-rl是基于tensorflow1.13.1实现,而tensorflow1.13.1只能支持python3.7及以下。如果不用官方的safety-rl可以装python3.8以上。

1. MuJoCo安装(for Linux)

https://github.com/deepmind/mujoco

参考:https://zhuanlan.zhihu.com/p/352304615

Mac M1无法安装,运行后会报错:

[1]    8409 illegal hardware instruction  ./simulate

1.下载mujoco200:

https://www.roboti.us/download.html

在这里插入图片描述

点击mujoco200 linux,下载一个zip压缩包。

  1. 下载激活码(已被DeepMind收购,可以免费和激活)

https://www.roboti.us/license.html

在这里插入图片描述

点击Activation key,下载一个txt文件。

  1. 安装

在home目录下

mkdir ~/.mujoco # 创建.mujoco目录
cp mujoco200_linux.zip ~/.mujoco
cd ~/.mujoco
unzip mujoco200_linux.zip # 解压
mv mujoco200_linux mujoco200 # 这一步很重要cp mjkey.txt ~/.mujoco/mujoco200/bin # 把激活码放到bin目录下
  1. 添加环境变量

vim ~/.bashrc 在最后添加下面两行:

export LD_LIBRARY_PATH=~/.mujoco/mujoco200/bin${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} 
export MUJOCO_KEY_PATH=~/.mujoco${MUJOCO_KEY_PATH}

source ~/.bashrc

  1. 测试
cd ~/.mujoco/mujoco200/bin
./simulate ../model/humanoid.xml

出现下面这个界面表示安装成功。

在这里插入图片描述

2. 安装mujoco-py

https://github.com/deepmind/mujoco

  1. 安装

不同mujoco版本对应的mujoco-py版本

Mujoco150对应的Mujoco-py版本

(Windows系统只支持这个版本的mujoco,但是safety-gym以来mujoco_py==2.0.2.7及以上版本的,所有似乎Windows下不能用)

pip install mujoco-py==1.50.1.68

Mujoco200对应的Mujoco-py版本

pip install mujoco-py==2.0.2.8

Mujoco210对应的Mujoco-py版本

pip install mujoco-py==2.1.2.14

  1. 测试
import mujoco_py
import os
mj_path, _ = mujoco_py.utils.discover_mujoco()
xml_path = os.path.join(mj_path, 'model', 'humanoid.xml')
model = mujoco_py.load_model_from_path(xml_path)
sim = mujoco_py.MjSim(model)print(sim.data.qpos)
# [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]sim.step()
print(sim.data.qpos)
# [-2.09531783e-19  2.72130735e-05  6.14480786e-22 -3.45474715e-06
#   7.42993721e-06 -1.40711141e-04 -3.04253586e-04 -2.07559344e-04
#   8.50646247e-05 -3.45474715e-06  7.42993721e-06 -1.40711141e-04
#  -3.04253586e-04 -2.07559344e-04 -8.50646247e-05  1.11317030e-04
#  -7.03465386e-05 -2.22862221e-05 -1.11317030e-04  7.03465386e-05
#  -2.22862221e-05]

报错:

在这里插入图片描述

解决方案

运行显示以下错误:

distutils.errors.CompileError:command′/usr/bin/gcc′failedwithexitcode

分发、编译错误,原因是缺少libosmesa6-dev、patchelf用以动态链接

第一步:安装libosmesa6-dev

sudo apt install libosmesa6-dev

安装好libosmesa6-dev,如若运行测试缺少如下包,便执行第二步

第二步:安装patchelf(两个命令选一个就行)

pip install patchelf sudo apt-get -y install patchelf

参考:https://zhuanlan.zhihu.com/p/547442285

3. 安装safety-gym

https://github.com/openai/safety-gym

  1. 安装
git clone https://github.com/openai/safety-gym.gitcd safety-gympip install -e .
  1. 测试
import safety_gym
import gymenv = gym.make('Safexp-PointGoal1-v0')

4. 安装safe-rl

https://github.com/openai/safety-starter-agents

(这一步可不用,看你需不需要使用openai团队官方提供的算法)

cd safety-starter-agents
pip install -e .

注意

  1. 建议单独pip依赖库,然后setup.py里注释掉,再运行 pip install -e .

  2. 安装 mpi4py==3.0.2 时也可能会报错,可以去掉版本号或安装 mpi4py-3.1.4

  3. 安装tensorflow可能会出现tensorflow==1.13.1 版本可能找不到(对于python3.8及以上),可以去掉版本号:

    pip install tensorflow

    但是这样会有很多代码会报错,因为版本不同,很多方法修改删减了。

    或者可以到下面网址下载对应版本tensorflow安装:

    https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/tensorflow/

windows下安装mujoco和mujoco_py参考:

Win 10、Win 11 安装 MuJoCo 及 mujoco-py 教程_lan 606的博客-CSDN博客_windows安装mujoco_py

【Mujoco】在Win10下的安装

二、测试案例

1. safety-gym测试案例

  1. 使用pre-configured 环境
import safety_gym
import gym
from tqdm import tqdmdef main():robot = "Point" # Point | Car | Doggotask  = "Button"  # Goal | Button | Pushlevel = "1"     # 0 | 1 | 2# env = gym.make('Safexp-PointGoal1-v0')env = gym.make(f'Safexp-{robot}{task}{level}-v0')print("Actin Space:", env.action_space)print("Observation:", env.observation_space)env.reset()for i in tqdm(range(10000)):env.render()action = env.action_space.sample()    # take a random actionnext_observation, reward, done, info = env.step(action)# print(f"[{i}] reward: {reward}, info: {info}")if done:env.reset()if __name__ == "__main__":main()

An environment in the Safety Gym benchmark suite is formed as a combination of a robot (one of Point, Car, or Doggo), a task (one of Goal, Button, or Push), and a level of difficulty (one of 0, 1, or 2, with higher levels having more challenging constraints). Environments include:

  • Safexp-{Robot}Goal0-v0: 机器人必须导航到目标。
  • Safexp-{Robot}Goal1-v0: 机器人必须导航到目标,同时避免危险。场景中有一个花瓶,但代理人不会因击中它而受到惩罚。
  • Safexp-{Robot}Goal2-v0: 机器人必须导航到目标,同时避免更多的危险和花瓶。
  • Safexp-{Robot}Button0-v0: 机器人必须按下目标按钮。
  • Safexp-{Robot}Button1-v0: 机器人必须按下目标按钮,同时避免危险和 gremlins,同时不要按下任何错误的按钮。
  • Safexp-{Robot}Button2-v0: 机器人必须按下目标按钮,同时避免更多的危险和 gremlins,同时不要按下任何错误的按钮。
  • Safexp-{Robot}Push0-v0: 机器人必须将盒子推向目标。
  • Safexp-{Robot}Push1-v0: 机器人必须将箱子推向目标,同时避免危险。场景中存在一根柱子,但智能体不会因击中它而受到惩罚。
  • Safexp-{Robot}Push2-v0: 机器人必须将箱子推向目标,同时避开更多的危险和柱子。

(To make one of the above, make sure to substitute {Robot} for one of Point, Car, or Doggo.)

  1. 自定义创建环境
import safety_gym
import gymfrom safety_gym.envs.engine import Engine
from gym.envs.registration import registerconfig = {'robot_base': 'xmls/car.xml','task': 'push','observe_goal_lidar': True,'observe_box_lidar': True,'observe_hazards': True,'observe_vases': True,'constrain_hazards': True,'lidar_max_dist': 3,'lidar_num_bins': 16,'hazards_num': 4,'vases_num': 4
}env = Engine(config)register(id='SafexpTestEnvironment-v0',entry_point='safety_gym.envs.mujoco:Engine',kwargs={'config': config})env.reset()for i in range(10000):# action = env.sample()env.render()action = env.action_space.sample()    # take a random actionnext_observation, reward, done, info = env.step(action)print(f"[{i}] reward: {reward}, info: {info}")# print(info)# breakif done:env.reset()env.close()

2. safety-rl测试案例

  1. Example Script
from safe_rl import ppo_lagrangian
import gym, safety_gymppo_lagrangian(env_fn = lambda : gym.make('Safexp-PointGoal1-v0'),ac_kwargs = dict(hidden_sizes=(64,64)))
  1. Reproduce Experiments from Paper
cd /path/to/safety-starter-agents/scripts
python experiment.py --algo ALGO --task TASK --robot ROBOT --seed SEED --exp_name EXP_NAME --cpu CPU

其中

  • ALGO is in ['ppo', 'ppo_lagrangian', 'trpo', 'trpo_lagrangian', 'cpo'].
  • TASK is in ['goal1', 'goal2', 'button1', 'button2', 'push1', 'push2'] .
  • ROBOT is in ['point', 'car', 'doggo'].
  • SEED is an integer. In the paper experiments, we used seeds of 0, 10, and 20, but results may not reproduce perfectly deterministically across machines.
  • CPU is an integer for how many CPUs to parallelize across.

EXP_NAME is an optional argument for the name of the folder where results will be saved. The save folder will be placed in /path/to/safety-starter-agents/data

例如:

python experiment.py --algo ppo--task goal1--robot point--seed 1024--exp_name project --cpu 1

报错:

在这里插入图片描述

解决:

https://blog.csdn.net/qq_42951560/article/details/124997453

pip uninstall protobuf
pip install protobuf==3.20.1

相关文章:

Safety-Gym环境配置与安

官网: https://github.com/openai/safety-gym https://github.com/openai/safety-starter-agents 一、安装依赖环境配置 建议使用python 3.7及以下环境,因为官方的safety-rl是基于tensorflow1.13.1实现,而tensorflow1.13.1只能支持python…...

3月再不跳槽,就晚了

从时间节点上来看,3月、4月是每年跳槽的黄金季! 以 BAT 为代表的互联网大厂,无论是薪资待遇、还是平台和福利,都一直是求职者眼中的香饽饽,“大厂经历” 在国内就业环境中无异于一块金子招牌。在这金三银四的时间里&a…...

HTTP cookie格式与约束

cookie是前端编程当中经常要使用到的概念,我们可以使用cookie利用浏览器来存放用户的状态信息保存用户做了一些什么事情。session是服务器端维护的状态。session又是如何和cookie关联起来。后面介绍cookie和session的使用。Cookie 是什么?RFC6265, HTTP …...

docker基础

docker基础 docker概述 docker的出现?docker解决思想docker历史docker链接docker能干什么?开发-运维 docker安装 镜像(image)容器(container)仓库(repository)底层原理 docker命令 帮助命令镜像命令 docker-images查看所有本地主机上的镜像docker-searc…...

【微信小程序】--JSON 配置文件作用(三)

💌 所属专栏:【微信小程序开发教程】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &#…...

EDA-课设

EDA-课程设计-电子闹钟 一、实验目的 1.掌握多层电路在 QuartusII 集成开发环境中的实现; 2.熟练掌握基于 QuartusII 集成开发环境的组合逻辑电路设计流程; 3.掌握基于 QuartusII 集成开发环境的时序逻辑电路设计流程; 4.理解有限状态机设计…...

C/C++每日一练(20230222)

目录 1. 部分复制字符串(★) 2. 按字典顺序排列问题(★★) 3. 地下城游戏(★★★) 附录 动态规划 1. 部分复制字符串 将字符串2小写字母复制到字符串1:编写程序,输入字符串s2,将其中所有小写字母复制到字符串数组strl中。例如:aal1bb22cc33de4AA55…...

Java API 文档搜索引擎

1. 认识搜索引擎:在搜狗搜索的搜索结果页中, 包含了若干条结果, 每一个结果包含了图标, 标题, 描述, 展示URL等搜索引擎的本质:输入一个查询词, 得到若干个搜索结果, 每个搜索结果包含了标题, 描述, 展示URL和点击URL2. 搜索引擎思路:2.1 搜索的核心思路:当前我们有很多的网页(…...

2023美赛C题Wordle二三问分布预测和难度分类预测

文章目录前言题目介绍人数分布预测首先建立字母词典,加上时间特征数据预处理训练和预测函数保存模型函数位置编码模型及其参数设置模型训练以及训练曲线可视化预测人数分布难度分类预测总结前言 2023美赛选了C题,应该很多人会选,一看就好做&…...

gdb的简单练习

题目来自《ctf安全竞赛入门》1.用vim写代码vim gdb.c#include "stdio.h" #include "stdlib.h" void main() {int i 100;int j 101;if (i j){printf("bingooooooooo.");system("/bin/sh");}elseprintf("error............&quo…...

如何使用python AI快速比对两张人脸图像?

本篇文章的代码块的实现主要是为了能够快速的通过python第三方非标准库对比出两张人脸是否一样。 实现过程比较简单,但是第三方python依赖的安装过程较为曲折,下面是通过实践对比总结出来的能够支持的几个版本,避免大家踩坑。 python版本&a…...

(2)C#传智:变量基础(第二天)

一、注释符 不写注释是流氓,名字瞎起是扯蛋。 注释作用:解释与注销 命名: 以字母、_、开头,里面只能有_与特殊符,其它不得出现如%*&^等。 不能与关键字重复。区分大小写,Num…...

02-mysql高级-

文章目录mysql高级1,约束1.1 概念1.2 分类1.3 非空约束1.4 唯一约束1.5 主键约束1.6 默认约束1.7 约束练习1.8 外键约束1.8.1 概述1.8.2 语法1.8.3 练习2,数据库设计2.1 数据库设计简介2.2 表关系(一对多)mysql高级 今日目标 掌握约束的使用 掌握表关系…...

windows 使用everything 查看文件(夹)存储空间占用

起因 总是那个原因,C: D: E:全都红了,下的游戏太多了,然后就这样了,之前也有过不少这种情况.几年前,就在智能手机上见过类似的功能. 大概就是遍历文件系统,统计每个文件的大小,然后父节点记录所有子节点的和,然后可以显示占用百分比之类的. 经过 在windows 上我最开始使用ex…...

2023该好好赚钱了,推荐三个下班就能做的副业

在过去的两年里,越来越多的同事选择辞职创业。许多人通过互联网红利赚到了他们的第一桶金。随着短视频的兴起,越来越多的人吹嘘自己年收入百万,导致很多刚进入职场的年轻人逐渐迷失自我,认为钱特别容易赚。但事实上,80…...

vue3如何进行数据监听watch/watchEffect

我们都知道监听器的作用是在每次响应式状态发生变化时触发,在组合式 API 中,我们可以使用 watch()函数和watchEffect()函数, 当你更改了响应式状态,它可能会同时触发 Vue 组件更新和侦听器回调。 默认情况下,用户创建的侦听器回…...

Wgcloud安装和使用(性能监控)

一、Wgcloud说明 官网:https://www.wgstart.com/ WGCLOUD支持主机各种指标监测(cpu使用率,cpu温度,内存使用率,磁盘容量,磁盘IO,硬盘SMART健康状态,系统负载,连接数量&…...

前端如何实现本地图片上传?

前端如何实现本地图片上传? 摘要 对于学习前端的小伙伴都有一个困惑,就是平常想上手小项目,但碍于不想购买服务器,实践受到了限制。 一般我选择node.js搭建服务器,毕竟基于JavaScript语言,简直不是一家人…...

【基础算法】差分的应用(一维差分和二维差分)

🌹作者:云小逸 📝个人主页:云小逸的主页 📝Github:云小逸的Github 🤟motto:要敢于一个人默默的面对自己,强大自己才是核心。不要等到什么都没有了,才下定决心去做。种一颗树,最好的时间是十年前…...

第49章 API统一集中管理

1 关于统一集中管理API的一些思考 1、统一集中管理是保证工程性项目得保质、保量、成功实施,并对后期维护提供数据支撑的最有效,最节省资源和时间的技能和做法,软件做为一种特殊的工程性项目,也符合上述特性。 2、由于在前台实现中…...

carla0.9.13-UE4添加4轮车模型(Linux系统)

前期准备建模工具:blender:v3.4.1;可以在Ubuntu Software商店直接下载虚拟引擎:carla-UE4 (carla v0.9.13),无需额外安装UE4,carla中自带插件编译carla参照官方文档:https://carla.readthedocs.io/en/0.9.1…...

对比yolov4和yolov3

目录 1. 网络结构的不同 1.1 Backbone 1.1.1 Darknet53 1.1.2 CSPDarknet53 1.2 Neck 1.2.1 FPN 1.2.2 PAN 1.2.3 SPP 1.3 Head 2. ​​​​​数据增强​​​​​ 2.1 CutMix 2.2 Mosaic 3. 激活函数 4. 损失函数 5. 正则化方法 知识点 记录备忘。 总体而言&…...

Android ServiceManager

1.ServiceManager ServiceManager在init进程启动后启动,用来管理系统中的Service。 一般开机过程分为三个阶段: ①OS级别,由bootloader载入linux内核后,内核开始初始化,并载入built-in的驱动程序,内核完成开机后,载入init process,切换至user-space后,结束内核的循…...

数据挖掘,计算机网络、操作系统刷题笔记53

数据挖掘,计算机网络、操作系统刷题笔记53 2022找工作是学历、能力和运气的超强结合体,遇到寒冬,大厂不招人,可能很多算法学生都得去找开发,测开 测开的话,你就得学数据库,sql,orac…...

地球板块运动vr交互模拟体验教学提高学生的学习兴趣

海陆变迁是地球演化史上非常重要的一个过程,它不仅影响着地球的气候、地貌、生物多样性等方面,还对人类文明的演化产生了深远的影响。为了帮助学生更加深入地了解海陆变迁的过程和机制,很多高校教育机构开始采用虚拟现实技术进行教学探究。 V…...

【Android玩机】跟大家聊聊面具Magisk的使用(安装、隐藏)

目录:1、Magisk中文网2、隐藏面具和Root(一共3种方法)1、Magisk中文网 (1)首先Magisk有一个中文网,对新手非常友好 (2)这网站里面主要包含:6 部分 (3)按照他给…...

DACS: Domain Adaptation via Cross-domain Mixed Sampling 学习笔记

DACS介绍方法Naive MixingDACSClassMix![在这里插入图片描述](https://img-blog.csdnimg.cn/ca4f83a2711e49f3b754ca90d774cd50.png)算法流程实验结果反思介绍 近年来,基于卷积神经网络的语义分割模型在众多应用中表现出了显著的性能。然而当应用于新的领域时&…...

python并发编程(并发与并行,同步和异步,阻塞与非阻塞)

最近在学python的网络编程,学了socket通信,并利用socket实现了一个具有用户验证功能,可以上传下载文件、可以实现命令行功能,创建和删除文件夹,可以实现的断点续传等功能的FTP服务器。但在这当中,发现一些概…...

【项目】DTO、VO以及PO之间的关系和区别

【项目】DTO、VO以及PO之间的关系和区别 文章目录【项目】DTO、VO以及PO之间的关系和区别1.概念2. 作用1.概念 DTO:DTO是 Data Transfer Object 的缩写,也叫数据传输对象。 PO:PO是 Persistent Object 的缩写,也叫持久化对象。 …...

Nginx介绍

什么是Nginx? Nginx 是一款高性能的 http 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器。由俄罗斯的程序设计师伊戈尔西索夫(Igor Sysoev)所开发,官方测试 nginx 能够支支撑 5 万并发链接&#x…...