当前位置: 首页 > news >正文

熵 | 无线通信知识

文章目录

  • 一、信息论(熵、联合熵、条件熵)
  • 二、Bernoulli熵
  • 三、联合熵和条件熵
  • 四、互信息
  • 五、相对熵(KL距离)
  • 六、微分熵
  • 七、最大熵分布
  • 常需要的不等式公式

一、信息论(熵、联合熵、条件熵)

熵定义: H ( X ) = E [ − l o g 2 p ( x ) ] = − ∑ x ∈ X p ( x ) l o g 2 p ( x ) H(X)=E[-log_2p(x)]=-\sum_{x\in X}p(x)log_2p(x) H(X)=E[log2p(x)]=xXp(x)log2p(x)
note

  1. H(X)是X的平均香农信息内容
  2. H(X)是每个符号的平均信息量
  3. 二元问题(抛硬币),H(X)取值为[H(X),H(X)+1]

为什么用 l o g 2 ( . ) log_2(.) log2(.)衡量信息

非负性: f ( p ) ≥ 0 f(p)\ge0 f(p)0, 0 ≤ p ≤ 1 0\le p\le1 0p1
特殊点:当p=0, f ( p ) = ∞ f(p)=\infty f(p)=
可加性
单调递增连续性 ??

二、Bernoulli熵

符号集 χ = [ 0 , 1 ] \chi=[0,1] χ=[0,1],对应的概率 p ⃗ = [ p , 1 − p ] \vec{p}=[p,1-p] p =[p,1p]
Bernoulli熵: H ( X ) = H ( p ) = − p l o g 2 p − ( 1 − p ) l o g 2 ( 1 − p ) H(X)=H(p)=-plog_2p-(1-p)log_2(1-p) H(X)=H(p)=plog2p(1p)log2(1p)
note:

  1. 通常用 H ( p ) H(p) H(p)表示 H ( X ) H(X) H(X)
  2. p=0 or 1时, H ( p ) = 0 H(p)=0 H(p)=0
  3. H ( p ) H(p) H(p)是p的凸函数
  4. p=0.5, H ( p ) H(p) H(p)最大
  5. H ( p ) H(p) H(p)的取值范围 0 ≤ H ( p ) ≤ l o g 2 ∣ χ ∣ 0\le H(p)\le log_2|\chi| 0H(p)log2χ

请添加图片描述

三、联合熵和条件熵

联合熵:
H ( X , Y ) = − E l o g p ( x , y ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) l o g p ( x , y ) H(X,Y)=-Elogp(x,y)=-\sum_{x\in X} \sum_{y\in Y} p(x,y)logp(x,y) H(X,Y)=Elogp(x,y)=xXyYp(x,y)logp(x,y)
条件熵
H ( Y ∣ X ) = − E l o g ( y ∣ x ) = − ∑ x ∈ X ∑ y ∈ Y p ( x , y ) l o g p ( y ∣ x ) H(Y|X)=-Elog(y|x)=-\sum_{x\in X} \sum_{y\in Y}p(x,y)logp(y|x) H(YX)=Elog(yx)=xXyYp(x,y)logp(yx)
H ( Y ∣ X ) = ∑ x ∈ X p ( x ) H ( Y ∣ X = x ) H(Y|X)=\sum_{x\in X}p(x)H(Y|X=x) H(YX)=xXp(x)H(YX=x)
熵的链式法则

  1. H ( X , Y ) = H ( X ) + H ( Y ∣ X ) H(X,Y)=H(X)+H(Y|X) H(X,Y)=H(X)+H(YX)
  2. H ( X , Y ∣ Z ) = H ( X ∣ Z ) + H ( Y ∣ X , Z ) H(X,Y|Z)=H(X|Z)+H(Y|X,Z) H(X,YZ)=H(XZ)+H(YX,Z)
  3. H ( X 1 , X 2 , . . . . X n ) = ∑ i = 1 n H ( X i ∣ X i − 1 , . . . . X 1 ) H(X_1,X_2,....X_n)=\sum_{i=1}^{n}H(X_i|X_{i-1},....X_1) H(X1,X2,....Xn)=i=1nH(XiXi1,....X1)

四、互信息

定义:
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y)=H(X)-H(X|Y)=H(X)+H(Y)-H(X,Y) I(X;Y)=H(X)H(XY)=H(X)+H(Y)H(X,Y)
互信息具有对称性

I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) I(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y|X) I(X;Y)=H(X)H(XY)=H(Y)H(YX)
I ( X ; Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y)=H(X)+H(Y)-H(X,Y) I(X;Y)=H(X)+H(Y)H(X,Y)
I ( X ; Y ) = I ( Y , X ) I(X;Y)=I(Y,X) I(X;Y)=I(Y,X)
I ( X ; X ) = H ( X ) I(X;X)=H(X) I(X;X)=H(X)
I ( X ; Y ) ≥ 0 I(X;Y)\ge0 I(X;Y)0,当且仅当X Y互相独立时,等号成立

互信息的链式法则
I ( X 1 , X 2 , . . . . X n ; Y ) = ∑ i = 1 n I ( X i ; Y ∣ X i − 1 , . . . . , X 1 ) I(X_1,X_2,....X_n;Y)=\sum_{i=1}^nI(X_i;Y|X_{i-1},....,X_1) I(X1,X2,....Xn;Y)=i=1nI(Xi;YXi1,....,X1)

五、相对熵(KL距离)

D ( p ⃗ ∣ ∣ q ⃗ ) = ∑ x ∈ X p ( x ) l o g q ( x ) p ( x ) = E p ⃗ [ − l o g q ( x ) ] − H ( p ⃗ ) D(\vec{p}||\vec{q})=\sum_{x\in X}p(x)log\frac{q(x)}{p(x)}=E_{\vec{p}}[-logq(x)]-H(\vec{p}) D(p ∣∣q )=xXp(x)logp(x)q(x)=Ep [logq(x)]H(p )
D ( p ⃗ ∣ ∣ q ⃗ ) D(\vec{p}||\vec{q}) D(p ∣∣q )测量的是两个概率分布 p ⃗ \vec{p} p q ⃗ \vec{q} q 间的距离,并非真实距离
D ( p ⃗ ∣ ∣ q ⃗ ) ≥ 0 D(\vec{p}||\vec{q})\ge 0 D(p ∣∣q )0,当且仅当 p ⃗ \vec{p} p = q ⃗ \vec{q} q ,等号成立

六、微分熵

对于连续型随机变量,一个以f(x)为密度函数的连续型随机变量,X的微分熵h(x)为:
h ( x ) = ∫ − ∞ ∞ f X ( x ) l o g f X ( x ) d x = E − l o g f X ( x ) h(x)=\int_{-\infty}^{\infty}f_X{(x)}logf_X(x)dx=E-logf_X(x) h(x)=fX(x)logfX(x)dx=ElogfX(x)
note

  • 微分熵仅依赖于随机变量的概率密度函数,有时候将微分熵写为h(f)
  • 微分熵可以为负值

微分熵分类

均匀分布的微分熵高斯分布的微分熵多元高斯分布的微分熵
前提条件:随机变量服从均匀分布 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)高斯分布 X ∼ U ( μ , σ 2 ) X\sim U(\mu,\sigma^2) XU(μ,σ2) X 1 : n ∼ N ( m ⃗ , k ⃗ ) X_{1:n}\sim N(\vec{m},\vec{k}) X1:nN(m ,k )
pdf f ( x ) = { 1 b − a , x ∈ ( a , b ) ) 0 e l s e f(x)=\left\{\begin{matrix}\frac{1}{b-a} ,&x\in(a,b)) \\ 0 &else \end{matrix}\right. f(x)={ba1,0x(a,b))else f ( x ) = 1 ( 2 π σ 2 ) 1 2 e x p { − 1 2 σ 2 ( x − μ ) 2 } f(x)=\frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}}exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\} f(x)=(2πσ2)211exp{2σ21(xμ)2} f ( x ) = ∣ 2 π k ⃗ ∣ 1 2 e x p { − 1 2 ( x − m ⃗ ) T k ⃗ − 1 ( x − m ⃗ ) } f(x)=|2\pi\vec{k}|^\frac{1}{2}exp\{-\frac{1}{2}(x-\vec{m})^T\vec k^{-1}(x-\vec m)\} f(x)=∣2πk 21exp{21(xm )Tk 1(xm )}m:均值矢量 k ⃗ \vec k k 协方差矢量
微分熵 h ( x ) = ∫ a b f ( x ) l o g f ( x ) d x = l o g ( b − a ) h(x)=\int_a^bf(x)logf(x)dx=log(b-a) h(x)=abf(x)logf(x)dx=log(ba)当b-a<1时,h(x)<0 h ( x ) = − l o g e ∫ − ∞ ∞ f ( x ) l n f ( x ) d x = 1 2 l o g ( 2 π e σ 2 ) h(x)=-loge\int_{-\infty}^{\infty}f(x)lnf(x)dx=\frac{1}{2}log(2\pi e\sigma^2) h(x)=logef(x)lnf(x)dx=21log(2πeσ2) h ( x ) = 1 2 l o g ∣ 2 π e k ⃗ ∣ h(x)=\frac{1}{2}log|2\pi e\vec k| h(x)=21log∣2πek

七、最大熵分布

  1. 条件一:(幅值约束)对于r有限长范围(a,b)使其最大熵的分布是均匀分布
    u ( x ) = 1 b − a → u(x)=\frac{1}{b-a} \rightarrow u(x)=ba1 0 ≤ D ( f ∣ ∣ x ) → h f ( x ) = l o g ( b − a ) 0 \le D(f||x) \rightarrow h_f(x)=log(b-a) 0D(f∣∣x)hf(x)=log(ba)

  2. 条件二:(功率约束)给定协方差矩阵 k ⃗ \vec k k ,零均值的多元高斯分布能使熵在 ( − ∞ , ∞ ) n (-\infty,\infty)^n (,)n上最大
    ϕ ( x ) = ∥ 2 π k ⃗ ∥ 1 2 e x p { − 1 2 x T k ⃗ − 1 x ⃗ } \phi (x)=\|2\pi\vec{k}\|^\frac{1}{2}exp\{-\frac{1}{2}x^T\vec k^{-1}\vec x\} ϕ(x)=∥2πk 21exp{21xTk 1x };
    0 ≤ D ( f ∣ ∣ x ) = h f ( x ) − E f l o g ϕ ( x ) → h f ( x ) ≤ − ( l o g e ) E f ( − 1 2 l n ∣ 2 π k ⃗ ∣ − 1 2 x T k ⃗ − 1 x ) = h ϕ ( x ) 0 \le D(f||x)=h_f(x)-E_flog\phi(x) \rightarrow h_f(x)\le-(loge)E_f(-\frac{1}{2}ln|2\pi \vec k|-\frac{1}{2}x^T \vec k^{-1}x)=h_{\phi (x)} 0D(f∣∣x)=hf(x)Eflogϕ(x)hf(x)(loge)Ef(21ln∣2πk 21xTk 1x)=hϕ(x)

常需要的不等式公式

H ( Y ∣ X ) ≤ H ( X ) H(Y|X)\le H(X) H(YX)H(X),X和Y互相独立时,等号成立
H ( X 1 , X 2 , . . . . X n ) ≤ ∑ i = 1 n H ( X i ) H(X_1,X_2,....X_n)\le \sum_{i=1}^nH(X_i) H(X1,X2,....Xn)i=1nH(Xi),当且仅当 X i X_i Xi互相独立时等号成立

参考文章:通信算法基础知识汇总(5)、通信算法基础知识汇总(8)

相关文章:

熵 | 无线通信知识

文章目录 一、信息论&#xff08;熵、联合熵、条件熵&#xff09;二、Bernoulli熵三、联合熵和条件熵四、互信息五、相对熵(KL距离)六、微分熵七、最大熵分布常需要的不等式公式 一、信息论&#xff08;熵、联合熵、条件熵&#xff09; 熵定义&#xff1a; H ( X ) E [ − l …...

黑马JVM总结(七)

&#xff08;1&#xff09;StringTable_编译器优化 “a”“b”对应#4&#xff1a;是去常量池中找ab的这个符号 astore 5&#xff1a;是把这个存入编号为5的局部变量 “ab”对应的指令 #4&#xff0c;跟“a”“b”对应#4下面弄是一样的 在执行s3“ab”这行个代码时&#xf…...

Vue3核心语法一

Vue3核心语法一 rectiveshallowReactiverefcomputedwatchwatchEffet 使用Vue3创建项目template中标签可以多个根标签,可以通过setup开启组合式API,组合式API优点可以使相同业务放到一起 rective 定义响应式数据, import { reactive} from "vue";const data reactiv…...

5.11.Webrtc接口的设计原理

在上节课中呢&#xff0c;我向你介绍了web rtc的接口宏&#xff0c;那有很多同学会产生疑问啊&#xff0c;那觉得web rtc为什么要把接口设计的这么复杂&#xff1f;还非要通过宏来实现一个代理类&#xff0c;再通过代理类来调用到web rtc内部。 那为什么要这么设计呢&#xf…...

2022年09月 C/C++(八级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:道路 N个以 1 … N 标号的城市通过单向的道路相连:。每条道路包含两个参数:道路的长度和需要为该路付的通行费(以金币的数目来表示) Bob and Alice 过去住在城市 1.在注意到Alice在他们过去喜欢玩的纸牌游戏中作弊后,Bob和她分手…...

Vue3 监听属性-watch

文章目录 Vue3 监听属性-watch1. 概念2. 实例2.1 通过使用 watch 实现计数器2.2 千米与米之间的换算2.3 异步加载中使用 watch2.4 小计 Vue3 监听属性-watch 1. 概念 Vue3 监听属性 watch&#xff0c;可以通过 watch 来响应数据的变化。 watch 的作用&#xff1a;用于监测响应…...

JWT安全

文章目录 理论知识cookie(放在浏览器)session(放在 服务器)tokenjwt&#xff08;json web token&#xff09;headerpayloadSignatureJWT通信流程 JWT与Token 区别相同点区别 WebGoat靶场--JWT tokens环境启动第四关第五关第七关 属于越权漏洞 理论知识 cookie(放在浏览器) ​…...

LabVIEW利用人工神经网络辅助进行结冰检测

LabVIEW利用人工神经网络辅助进行结冰检测 结冰对各个领域构成重大威胁&#xff0c;包括但不限于航空航天和风力涡轮机行业。在起飞过程中&#xff0c;飞机机翼上轻微积冰会导致升力降低25%。研究报告称&#xff0c;涡轮叶片上的冰堆积可在19个月的运行时间内造成29MWh的功率损…...

Linux安装MySQL8.0

又又又又..Linux装MySQL。 删除原有的MySQL 查看安装的mysql信息&#xff1a;rpm -qa|grep -i mysql 删除mysql相关服务&#xff1a;rpm -e --nodeps 查询mysql遗留文件和依赖信息&#xff1a;find / -name mysql 手动删除mysql配置文件&#xff1a;rm -rf /etc/my.cnf 相关…...

【【萌新编写RISCV之前言CPU的部分介绍.3】】

萌新编写RISCV之前言CPU的部分介绍.3 CPU的数字电路结构实际十分简单&#xff0c;最主要的模块有PC&#xff08;地址生成&#xff09;&#xff0c;ALU&#xff08;运算&#xff09;&#xff0c;Register&#xff08;寄存&#xff09;&#xff0c;Decode&#xff08;译码&#…...

dl_model_param

set_dl_model_param —设置深度学习模型的参数 get_dl_model_param — Return the parameters of a deep learning model 返回深度学习模型的参数 使用read_dl_model读取前一步初始化后的网络模型&#xff0c;得到模型的句柄DLModelHandle。 接着用read_dict读取预处理后的数…...

Android相机调用-CameraX【外接摄像头】【USB摄像头】

Android相机调用有原生的Camera和Camera2&#xff0c;我觉得调用代码都太复杂了&#xff0c;CameraX调用代码简洁很多。 说明文档&#xff1a;https://developer.android.com/jetpack/androidx/releases/camera?hlzh-cn 现有查到的调用资料都不够新&#xff0c;对于外接摄像…...

第一个Java程序

1. 将扩展名.text更改为.java 2.文件夹&#xff08;Hello.java&#xff09;上方输入“cmd空格回车”&#xff08;没有加号&#xff09; 3.在命令提示符内输入“javac空格文件夹名称.java回车” (javac空格Hello.java回车) 执行成功后&#xff0c;文件夹下多一个Hello.class…...

OpenCV之霍夫变换检测直线

霍夫变换 首先是笛卡尔坐标系到霍夫空间的转换&#xff0c;比如笛卡尔坐标系中有一条直线 yaxb。 笛卡尔坐标系中一条直线&#xff0c;对应霍夫空间的一个点。 反过来同样成立&#xff08;霍夫空间的一条直线&#xff0c;对应笛卡尔坐标系的一个点&#xff09; 原理其实很简单 …...

lv3 嵌入式开发-11 Linux下GDB调试工具

目录 1 GDB简介 2 GDB基本命令 3 GDB调试程序 1 GDB简介 GDB是GNU开源组织发布的一个强大的Linux下的程序调试工具。 一般来说&#xff0c;GDB主要帮助你完成下面四个方面的功能&#xff1a; 1、启动你的程序&#xff0c;可以按照你的自定义的要求随心所欲的运行程序&#…...

Zabbix监控平台概念

1.概念 Zabbix是一款开源的、免费的、分布式监控平台支持web管理&#xff0c;WEB界面可以方便管理员使用可以监控硬件服务器CPU温度、风扇转速、操作系统CPU、EME、DISK、I/O、流量宽带、负载、端口、进程等Zabbix是C/S架构&#xff0c;Client客户端和Server端组成 2.Zabbix可…...

【javaSE】 枚举与枚举的使用

文章目录 &#x1f384;枚举的背景及定义⚾枚举特性总结&#xff1a; &#x1f332;枚举的使用&#x1f6a9;switch语句&#x1f6a9;常用方法&#x1f4cc;示例一&#x1f4cc;示例二 &#x1f38d;枚举优点缺点&#x1f334;枚举和反射&#x1f6a9;枚举是否可以通过反射&…...

NetSuite知识会汇编-管理员篇顾问篇2023

本月初&#xff0c;开学之际&#xff0c;我们发布了《NetSuite知识会汇编-用户篇 2023》&#xff0c;这次发布《NetSuite知识会汇编-管理员篇&顾问篇2023》。本篇挑选了近两年NetSuite知识会中的一些文章&#xff0c;涉及开发、权限、系统管理等较深的内容&#xff0c;共19…...

根号分治与多项式的巧妙结合:GYM-104386G

使用范围&#xff1a;序列上对于每种数的计数问题 考虑对每种数的出现次数进行根号分治 如果出现次数很少&#xff0c;直接平方暴力即可 如果很大考虑任意 ( i , j ) (i,j) (i,j)&#xff0c;我们拆一下&#xff0c;再移一下&#xff0c;然后就变成了卷积形式...

通过FTP高速下载几百G数据

基因组下载 (FTP) 常见问题解答 基因组FTP站点有哪些亮点?下载多个基因组组装数据的最简单方法是什么?下载大型数据集的最佳协议是什么?为什么 NCBI 基因组 FTP 站点要重组?我如何及时了解 NCBI 基因组 FTP 站点的变化?...

cudnn-windows-x86_64-8.6.0.163_cuda11-archive 下载

网址不太好访问的话,请从下面我提供的分享下载 Download cuDNN v8.6.0 (October 3rd, 2022), for CUDA 11.x 此资源适配 cuda11.x 将bin和include文件夹里的文件&#xff0c;分别复制到C盘安装CUDA目录的对应文件夹里 安装cuda时自动设置了 CUDA_PATH_V11_8 及path C:\Progra…...

多线程案例(1) - 单例模式

目录 单例模式 饿汉模式 懒汉模式 前言 多线程中有许多非常经典的设计模式&#xff08;这就类似于围棋的棋谱&#xff09;&#xff0c;这是用来解决我们在开发中遇到很多 "经典场景"&#xff0c;简单来说&#xff0c;设计模式就是一份模板&#xff0c;可以套用。…...

Arduino驱动TCS34725传感器(颜色传感器篇)

目录 1、传感器特性 2、硬件原理图 3、控制器和传感器连线图 4、驱动程序 TCS34725是一款低成本,高性价比的RGB全彩颜色识别传感器,传感器通过光学感应来识别物体的表面颜色。...

知识库网站如何搭建?需要注意这五个要点!

正因为知识库提供结构化知识库来记载信息和知识&#xff0c;便于团队沉淀经验、共享资源&#xff0c;形成完整的知识体系并持续进化​&#xff0c;使得它成为当前企业发展新宠。 构建自己/团队的知识库是一个良好的习惯&#xff0c;可以提高工作和学习效率&#xff0c;以下是一…...

【UE虚幻引擎】UE源码版编译、Andorid配置、打包

首先是要下载源码版的UE&#xff0c;我这里下载的是5.2.1 首先要安装Git 在你准备放代码的文件夹下右键点击Git Bash Here 然后可以直接git clone https://github.com/EpicGames/UnrealEngine 不行的话可以直接去官方的Github上下载Zip压缩包后解压 运行里面的Setup.bat&a…...

树和二叉树的相关概念及结构

目录 1.树的概念及结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.3.1 孩子兄弟表示法 1.3.2 双亲表示法 1.4 树的实际应用 2.二叉树的概念及结构 2.1 二叉树的概念 2.2 特殊的二叉树 2.3 二叉树的性质 2.4 二叉树的存储 2.4.1 顺序存储 2.4.2 链式存储 1.树…...

MySQL安装validate_password_policy插件

功能介绍 validate_password_policy 是插件用于验证密码强度的策略。该参数可以设定三种级别&#xff1a;0代表低&#xff0c;1代表中&#xff0c;2代表高。 validate_password_policy 主要影响密码的强度检查级别&#xff1a; 0/LOW&#xff1a;只检查密码长度。 1/MEDIUM&am…...

数据在内存中的存储——练习3

题目&#xff1a; 3.1 #include <stdio.h> int main() {char a -128;printf("%u\n",a);return 0; }3.2 #include <stdio.h> int main() {char a 128;printf("%u\n",a);return 0; }思路分析&#xff1a; 首先二者极其相似%u是无符号格式进行…...

web-案例

分页插件 登录 事务...

第一章 JAVA入门

文章目录 1.2 Java 的特点1.2.1 简单1.2.2 面向对象1.2.3 与平台无关① 平台与机器指令② C/C程序依赖平台③ Java 虚拟机与字节码1.2.4 多线程1.2.5 动态1.30安装 JDK1.3.1 平台简介0 Java SE②Java EE1.4 Java 程序的开发步骤②保存源文件1.5.2 编译1.8 Java之父-James Gosli…...

有免费做理化试验的网站吗/百度推广视频

为什么80%的码农都做不了架构师&#xff1f;>>> 关于UITableView的contentInset属性 1.关于滚动视图contentSize、contentOffset、contentInset 的整理 contentSize 是scrollview可以滚动的区域&#xff0c;比如frame (0 ,0 ,320 ,480) contentSize (320 ,960)&…...

网站制作基础教程/专业代写软文

使用场景 跳表&#xff08;Skiplist&#xff09;是一个特殊的链表&#xff0c;相比一般的链表&#xff0c;有更高的查找效率&#xff0c;可比拟二叉查找树&#xff0c;平均期望的查找、插入、删除时间复杂度都是O(logn)&#xff0c;许多知名的开源软件&#xff08;库&#xff…...

南京有哪些做网站的公司/360网站排名优化

问题 MediaConvert进行转码任务的时候&#xff0c;需要及时了解MediaConvert转码任务的状态。因为AWS设计成MediaConvert转码任务只能给AWS的服务监控平台CloudWatch发事件&#xff0c;这次就来说说怎么在CloudWatch上面配置对MediaConvert转码任务的监听。 步骤 MediaConve…...

宁波企业网站制作/google中文搜索引擎

(点击上方公众号&#xff0c;可快速关注)来源&#xff1a;Float_Luuu&#xff0c;my.oschina.net/andylucc/blog/539783今天查了很多资料&#xff0c;主要是想搞清楚写JAVA和CacheLine有什么关系以及我们如何针对CacheLine写出更好的JAVA程序。CPU和内存CPU是计算机的大脑&…...

有创意的个人网站/全球热搜榜排名今日

1 Spark SQL运行流程 1.1 Spark SQL核心——Catalyst Spark SQL的核心是Catalyst查询编译器&#xff0c;它将用户程序中的SQL/Dataset/DataFrame经过一系列操作&#xff0c;最终转化为Spark系统中执行的RDD。 1.2 Catalyst组成部分 Parser &#xff1a;用Antlr将SQL/Dataset/…...

国家信用信息系统年报/专业seo优化公司

public function index(){$cate 1; $query M(Cate)->field(id)->where(array(id>$cate,pid>$cate,_logic>OR))->buildSql();//在一个表中获得栏目的id $goods M(Goods)->where(cate_id in . $query)->select(); //在另一个表获得属于这些栏目的文…...