【八大经典排序算法】快速排序
【八大经典排序算法】快速排序
- 一、概述
- 二、思路实现
- 2.1 hoare版本
- 2.2 挖坑法
- 2.3 前后指针版本
- 三、优化
- 3.1 三数取中
- 3.1.1 最终代码
- 3.1.2 快速排序的特性总结
- 四、非递归实现快排
一、概述
说到快速排序就不得不提到它的创始人 hoare了。在20世纪50年代,计算机科学家们开始研究如何对数据进行排序,以提高计算机程序的效率。当时,常用的排序算法包括冒泡排序、插入排序和选择排序等。
然而,这些算法的效率都相对较低,特别是在处理大量数据时。于是,人们开始寻找更快速的排序算法。Tony Hoare 在研究中发现了一种基于分治思想的排序方法,即快速排序。
二、思路实现
快速排序的思想是任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
代码如下:
// 假设按照升序对array数组中[left, right]区间中的元素进行排序
void QuickSort(int* a, int begin, int end)
{if (begin >= end)return;// 按照基准值对数组的 [left, right)区间中的元素进行划分int keyi = PartSort(a, begin, end);//分成[begin,keyi-1] keyi [keyi+1,end]// 递归排[left, div)QuickSort(a, begin, keyi - 1);// 递归排[div+1, right)QuickSort(a, keyi + 1, end);
}
上述为快速排序递归实现的主框架,发现与二叉树前序遍历规则非常像,接下来只需分析如何按照基准值来对区间中数据进行划分的方式即可。
待排序集合分割时,将区间按照基准值划分为左右两半部分的常见方式有以下3种。
2.1 hoare版本
思路:
- 选择一个基准元素(key),可以是最左边也可以是最右边。
- 定义两个指针,一个指向数组的第一个元素(左指针),一个指向数组的最后一个元素(右指针)。(需要注意的是:若选择最左边的数据作为key,则需要right先走;若选择最右边的数据作为key,则需要left先走)
- 移动左指针,直到找到一个大于等于基准元素(key)的元素;移动右指针,直到找到一个小于等于基准元素(key)的元素。之后交换交换左右指针所指向的元素。然后不断重复上述步骤直到左指针大于右指针
- 最后将基准元素与右指针所指向的元素交换位置,此时基准元素位于正确的位置。此时左边元素>=key,右边元素<=key。
Tips:博主在这里解释一下为什么“若选择最左边的数据作为key,则需要right先走;若选择最右边的数据作为key,则需要left先走”,后续其他方法同理。
① :左边作key,右边先走,保证了相遇位置的值小于key或就是key的位置。
②:右边作key,左边先走,保证了相遇位置的值大于key或就是key的位置。
以①为例,L和R相遇无非就两种情况:L遇R,R遇L。
情况一:L遇R。在R停下来后,L还在走。由于R先走,R停下来的位置一定小于Key。相遇位置为R停下来的位置,一定比key小。
情况二:R遇L。再相遇的这一轮,L就不动了,R在移动。相遇位置即为L的位置。而L的位置就是key的位置 or 已经交换过一些轮次了,此时相遇位置一定比key小。
【动画演示】:
代码如下:
//[left, right]--采用左闭右闭
int PartSort(int* a, int left, int right)
{int keyi = left;while (left < right){//找到右边比key小的数while (left < right && a[right] <= a[keyi]){right--;}//找到左边比key大的数while (left < right && a[left] >= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[keyi], &a[left]);return left;
}void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
2.2 挖坑法
思路:
- .选出一个数据(一般是最左边或是最右边的)存放在key变量中,同时该数据位置形成一个坑。
- 还是左右指针left和right,left从左向右走,right从右向左走。(若在最左边挖坑,则需要R先走;若在最右边挖坑,则需要L先走)
- 移动右指针找到第一个比key小的数并填到坑位,此时右指针所在位置变成新的坑。然后移动左指针找到第一个比key大的数并填到坑位,此时左指针所在位置变成新的坑。然后和hoare版本一样,不断重复上述步骤即可
【动画演示】:
代码如下:
//挖坑法
int PartSort(int* a, int left, int right)
{int key = a[left];int hole = left;while (left < right){//找到右边比key小的值while (left < right && a[right] >= key){right--;}a[hole] = a[right];hole = right;//左边比key大的值while (left < right && a[left] <= key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
2.3 前后指针版本
思路:
- 选出一个key,一般是最左边或是最右边的。
- 起始时,prev指针指向序列开头,cur指针指向prev+1。
- 若cur指向的内容小于key,则prev先向后移动一位,然后交换prev和cur指针指向的内容,然后cur指针++;若cur指向的内容大于key,则cur指针直接++。如此进行下去,直到cur到达end位置,此时将key和++prev指针指向的内容交换即可。
【动画演示】:
代码如下:
//前后指针法
int PartSort(int* a, int left, int right)
{int keyi = left;int prev = left;int cur = left + 1;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
三、优化
虽然已经可以解决问题了,但还有一个问题:
当选取的key每次都是中位数时,效率最好,时间复杂度为O(N*logN);但当数组有序时变成最坏,时间复杂度变为O(N^2)!
对于上述情况,这里有两种优化方式:
- 三数取中法选key
- 递归到小的子区间时,可以考虑使用插入排序
3.1 三数取中
这里博主给出一直最简单的方法:
int GetMidIndix(int* a, int left, int right)
{int mid = left + (right - left) / 2;if (a[left] < a[mid]){if (a[mid] < a[right])return mid;else if (a[mid] > a[right])return right;elsereturn left;}else//a[left]>=a[mid]{if (a[mid] > a[right])return mid;else if (a[mid] < a[right])return right;elsereturn left;}
}
3.1.1 最终代码
void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}int GetMidIndix(int* a, int left, int right)
{int mid = left + (right - left) / 2;if (a[left] < a[mid]){if (a[mid] < a[right])return mid;else if (a[mid] > a[right])return right;elsereturn left;}else//a[left]>=a[mid]{if (a[mid] > a[right])return mid;else if (a[mid] < a[right])return right;elsereturn left;}
}// hoare
// [left, right]
//int PartSort(int* a, int left, int right)
//{
// int midi = GetMidIndix(a, left, right);
// Swap(&a[left], &a[midi]);
//
// int keyi = left;
// while (left < right)
// {
// //找到右边比key小的数
// while (left < right && a[right] <= a[keyi])
// {
// right--;
// }
//
// //找到左边比key大的数
// while (left < right && a[left] >= a[keyi])
// {
// left++;
// }
// Swap(&a[left], &a[right]);
// }
// Swap(&a[keyi], &a[left]);
// return left;
//}//挖坑法
//int PartSort(int* a, int left, int right)
//{
// int midi = GetMidIndix(a, left, right);
// Swap(&a[left], &a[midi]);
//
// int key = a[left];
// int hole = left;
// while (left < right)
// {
// //找到右边比key小的值
// while (left < right && a[right] >= key)
// {
// right--;
// }
// a[hole] = a[right];
// hole = right;
//
// //左边比key大的值
// while (left < right && a[left] <= key)
// {
// left++;
// }
// a[hole] = a[left];
// hole = left;
// }
// a[hole] = key;
// return hole;
//}//前后指针法
int PartSort(int* a, int left, int right)
{int midi = GetMidIndix(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int prev = left;int cur = left + 1;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}void QuickSort(int* a, int begin, int end)
{if (begin >= end)return;int keyi = PartSort(a, begin, end);//分成[begin,keyi-1] keyi [keyi+1,end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}
3.1.2 快速排序的特性总结
- 时间复杂度:O(N*logN)
- 空间复杂度:O(logN)
- 稳定性:不稳定
四、非递归实现快排
思路:
- 定义一个栈,然后将待排序的数组的起始索引和结束索引入栈。
- 通过前面将的三种分割区间的方法将数组的起始索引和结束索引之间的元素分成两部分,左边部分小于等于基准元素,右边部分大于等于基准元素。
- 由于非递归实现时,我们是通过从栈中两两取出维护待排序数组的下标,所以接下来就是如果左边部分的长度大于1,则将左边部分的起始索引和结束索引入栈;如果右边部分的长度大于1,则将右边部分的起始索引和结束索引入栈。最后循环此操作,直到栈为空。
代码如下:
//前后指针法
int PartSort(int* a, int left, int right)
{int midi = GetMidIndix(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int prev = left;int cur = left + 1;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}cur++;}Swap(&a[prev], &a[keyi]);keyi = prev;return keyi;
}//快排非递归
void QuickSortNonR(int* a, int begin, int end)
{ST st;STInit(&st);STPush(&st, end);STPush(&st, begin);while (!STEmpty(&st)){int left = STTop(&st);STPop(&st);int right = STTop(&st);STPop(&st);int keyi = PartSort(a, left, right);//[left,keyi-1] keyi [keyi+1,right]if (keyi + 1 < right){STPush(&st, right);STPush(&st, keyi + 1);}if (keyi - 1 > left){STPush(&st, keyi - 1);STPush(&st, left);}}STDestroy(&st);
}
相关文章:
【八大经典排序算法】快速排序
【八大经典排序算法】快速排序 一、概述二、思路实现2.1 hoare版本2.2 挖坑法2.3 前后指针版本 三、优化3.1 三数取中3.1.1 最终代码3.1.2 快速排序的特性总结 四、非递归实现快排 一、概述 说到快速排序就不得不提到它的创始人 hoare了。在20世纪50年代,计算机科学…...
vue 父组件给子组件传递一个函数,子组件调用父组件中的方法
vue 中父子组件通信,props的数据类型可以是 props: {title: String,likes: Number,isPublished: Boolean,commentIds: Array,author: Object,callback: Function,contactsPromise: Promise // or any other constructor }在父组件中,我们在子组件中给他…...
docker 获取Nvidia 镜像 | cuda |cudnn
本文分享如何使用docker获取Nvidia 镜像,包括cuda10、cuda11等不同版本,cudnn7、cudnn8等,快速搭建深度学习环境。 1、来到docker hub官网,查看有那些Nvidia 镜像 https://hub.docker.com/r/nvidia/cuda/tags?page2&name11.…...
uTool快捷指令
send("************"); quickcommand.sleep(200); keyTap("enter");...
R reason ‘拒绝访问‘的解决方案
Win11系统 安装rms的时候报错: Error in loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck vI[[j]]) : namespace Matrix 1.5-4.1 is already loaded, but > 1.6.0 is required## 安装rms的时候报错,显示Matrix的版本太低…...
许战海战略文库|品类缩量时代:制造型企业如何跨品类打造份额产品?
所有商业战略的本质是围绕着竞争优势与竞争效率展开的。早期,所有品牌立足于从局部竞争优势出发。因此,品牌创建初期大多立足于单个品类。后期增长受限,就要跨品类持续扩大竞争优势,将局部竞争优势转化为长期竞争优势,如果固化不前很难获得增…...
BIT-4-数组
一维数组的创建和初始化一维数组的使用 一维数组在内存中的存储 二维数组的创建和初始化二维数组的使用二维数组在内存中的存储 数组越界数组作为函数参数数组的应用实例1:三子棋 数组的应用实例2:扫雷游戏 1. 一维数组的创建和初始化 1.1 数组的创建 …...
L9945的H桥续流模式
在H桥的配置中,包括两种续流模式:主动续流和被动续流。 一个L9945可输出两个H桥驱动。HB1在CMD3中配置,HB2在CMD7中配置。 主动续流:通过Q3的MOS的二极管来续流 被动续流:通过Q3外部的二极管来续流...
Ubuntu20.04安装Nvidia显卡驱动、CUDA11.3、CUDNN、TensorRT、Anaconda、ROS/ROS2
1.更换国内源 打开终端,输入指令: wget http://fishros.com/install -O fishros && . fishros 选择【5】更换系统源,后面还有一个要输入的选项,选择【0】退出,就会自动换源。 2.安装NVIDIA驱动 这一步最痛心…...
linux下使用crontab定时器,并且设置定时不执行的情况,附:项目启动遇到的一些问题和命令
打开终端,以root用户身份登录。 运行以下命令打开cron任务编辑器: crontab -e 如果首次编辑cron任务,会提示选择编辑器。选择你熟悉的编辑器,比如nano或vi,并打开相应的配置文件。 在编辑器中,添加一行类…...
linux下二进制安装docker最新版docker-24.0.6
一.基础环境 本次实操是公司技术培训下基于centos7.9操作系统安装docker最新版docker-24.0.6,下载地址是:https://download.docker.com/linux/static/stable/x86_64/docker-24.0.6.tgz 二. 下载Docker压缩包 mkdir -p /opt/docker-soft cd /opt/docker…...
计算机视觉 01(介绍)
一、深度学习 1.1 人工智能 1.2 人工智能,机器学习和深度学习的关系 机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示[参考:黑…...
Java下部笔记
目录 一.双列集合 1.Map 2.Map的遍历方式 3.可变参数 4.Collection中的默认方法 5.不可变集合(map不会) 二.Stream流 1.获取stream流 2.中间方法 3.stream流的收集操作 4.方法引用 1.引用静态方法 2.引用成员方法 3.引用构造方法 4.使用类…...
链表基本操作
单链表简介 单链表结构 头指针是指向链表中第一个结点的指针 首元结点是指链表中存储第一个数据元素a1的结点 头结点是在链表的首元结点之前附设的一个结点;数据域内只放空表标志和表长等信息 单链表存储结构定义: typedef struct Lnode { ElemTyp…...
Linux学习笔记-Ubuntu系统下配置用户ssh只能访问git仓库
目录 一、基本信息1.1 系统信息1.2 git版本[^1]1.2.1 服务器端git版本1.2.2 客户端TortoiseGit版本1.2.3 客户端Git for windows版本 二、创建git用户和群组[^2]2.1 使用groupadd创建群组2.2 创建git用户2.2.1 使用useradd创建git用户2.2.2 配置新建的git用户ssh免密访问 2.3 创…...
央媒发稿不能改?媒体发布新闻稿有哪些注意点
传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 “央媒发稿不能改”是媒体行业和新闻传播领域的普遍理解。央媒,即中央主要媒体,是权威性的新闻源,当这些媒体发布新闻稿或报道时,其他省、…...
计算机竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)
文章目录 0 前言1 课题说明2 效果展示3 具体实现4 关键代码实现5 算法综合效果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的数学公式识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学…...
KPM算法
概念 KMP(Knuth–Morris–Pratt)算法是一种字符串匹配算法,用于在一个主文本字符串中查找一个模式字符串的出现位置。KMP算法通过利用模式字符串中的重复性,避免无意义的字符比较,从而提高效率。 KMP算法的核心思想是…...
全流程GMS地下水数值模拟及溶质(包含反应性溶质)运移模拟技术教程
详情点击公众号链接:全流程GMS地下水数值模拟及溶质(包含反应性溶质)运移模拟技术教程 前言 GMS三维地质结构建模 GMS地下水流数值模拟 GMS溶质运移数值模拟与反应性溶质运移模 详情 1.GMS的建模数据的收集、数据预处理以及格式等ÿ…...
GE D20 EME 10BASE-T电源模块产品特点
GE D20 EME 10BASE-T 电源模块通常是工业自动化和控制系统中的一个关键组件,用于为系统中的各种设备和模块提供电源。以下是可能包括在 GE D20 EME 10BASE-T 电源模块中的一些产品特点: 电源输出:D20 EME 模块通常提供一个或多个电源输出通道…...
游戏工作时d3dcompiler_47.dll缺失怎么修复?5种修复方法分享
游戏提示 d3dcompiler_47.dll 缺失的困扰,相信许多玩家都遇到过。这种情况通常会导致游戏无法正常运行,给玩家带来很大的不便。那么,该如何解决这个问题呢?小编将为大家介绍几种解决方法,希望对大家有所帮助。 首先&am…...
关于激光探测器光斑质心算法在FPGA硬件的设计
目录 0引言 1CCD采集图像质心算法 2基于FPGA的图像质心算法 3仿真结果与分析 4结论 0引言 在一些姿态检测的实际应用中,需要在被测对象上安装激光探测器[1],利用CCD相机捕捉激光光斑来检测观测对象的实际情况,光斑图像质心坐标的提取是图…...
理清SpringBoot CURD处理逻辑、顺序
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! 理清SpringBoot CURD处理逻辑、顺序 Controller(控制器): 控制器接收来自客户端的请求,并负责处理请求的路由和参数解析…...
缓存读写淘汰算法W-TinyLFU算法
在W-TinyLFU中,每个缓存项都会被赋予一个权重。这个权重可以表示缓存项的大小、使用频率、是否是热数据等因素。每次需要淘汰缓存时,W-TinyLFU会选择小于一定阈值的权重的缓存项进行淘汰,以避免淘汰热数据。 另外,W-TinyLFU也会根…...
C++中的 throw详解
在《C++异常处理》一节中,我们讲到了 C++ 异常处理的流程,具体为: 抛出(Throw)--> 检测(Try) --> 捕获(Catch) 异常必须显式地抛出,才能被检测和捕获到;如果没有显式的抛出,即使有异常也检测不到。在 C++ 中,我们使用 throw 关键字来显式地抛出异常,它的用…...
vue 封装Table组件
基于element-plus UI 框架封装一个table组件 在项目目录下的components新建一个Table.vue <template><section class"wrap"><el-tableref"table":data"tableData" v-loading"loading" style"width: 100%":…...
MySQL主从复制错误
当在MySQL的多线程复制中遇到错误时,你可能会看到上述的错误信息。错误的核心在于从服务器上的工作线程在尝试执行一个特定的事务时遇到了问题。 为了解决这个问题,你可以采取以下步骤: 查看MySQL的错误日志:错误日志可能会提供更…...
Redis群集
目录 1、redis群集三种模式 2、Redis 主从复制 2.1 主从复制的作用 2.2 主从复制流程 2.3 搭建Redis 主从复制 3、Redis 哨兵模式 3.1 哨兵模式的作用 3.2 故障转移机制 3.3 主节点的选举 4、Redis 群集模式 4.1 集群的作用 4.2 Redis集群的数据分片 4.3 搭建Redis…...
Spring AOP以及统一处理
一.Spring AOP 1.什么是Spring AOP AOP(Aspect Oriented Programming):面向切面编程,它是一种思想,它是对某一类事情的集中处理。 2.AOP的作用 想象一个场景,我们在做后台系统时,除了登录…...
vue2markdown转思维导图
官网 http://markmap.js.org 按照官网安装markmap-lib,markmap-view两个依赖外,还需要安装markmap-common 如果报错提示vuePdfNoSss相关问题,需要安装vue-pdf 如果报错can’t import the named export ‘xxx’ from non EcmaScript module,需…...
做网站需要的技术/成人英语培训班哪个机构好
第一步:平板使用数据线连接至电脑,并打开“USB调试” 可以通过命令查看到所有的设备,如果是使用真机调试,一定要确认adb devices中,只有一个设备可用。 adb devices #查看所有的设备 第二步:在真机Debug An…...
潍坊恒信建设集团网站/软文推广广告
概念: 专门在Vue中实现集中式状态(数据)管理的一个Vue插件,对vue应用中多个组件的共享状态进行集中式的管理(读/写),也是一种组件间通信的方式,且适用于任意组件间通信。 作用: 如果我们使用全局总线要让所有的组件…...
农产品网站建设投标书/平台推广是什么工作
C 语言关键字 auto 局部变量(自动储存) break无条件退出程序最内层循环 case switch语句中选择项 char单字节整型数据 const定义不可更改的常量值 continue中断本次循环,并转向下一次循环 default switch语句中的默认选择项 do 用于构…...
西城网站建设浩森宇特/seo系统培训
本文引用文章如链接: http://www.codinglabs.org/html/theory-of-mysql-index.html#more-100 参考书籍:Mysql技术内幕 本文主要是阐述mysql索引机制,主要是说明存储引擎Innodb 第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理…...
网站文章标题/网络营销策略的演变
115. 不同的子序列 给定一个字符串 S 和一个字符串 T,计算在 S 的子序列中 T 出现的个数。 一个字符串的一个子序列是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如࿰…...
北京 网站建设600/海口关键词优化报价
时间过得真是快,距离2021考研只剩21天了!再有15天就可以打印准考证了!小编为大家整理了打印准考证的时间、流程以及注意事项等小贴士。各位21考研er,打印准考证,这些事你一定要知道哦。1准考证长什么样?此图…...