Ubuntu20.04安装Nvidia显卡驱动、CUDA11.3、CUDNN、TensorRT、Anaconda、ROS/ROS2
1.更换国内源
打开终端,输入指令:
wget http://fishros.com/install -O fishros && . fishros
选择【5】更换系统源,后面还有一个要输入的选项,选择【0】退出,就会自动换源。
2.安装NVIDIA驱动
这一步最痛心了家人们,网上的教程太多了,我总是想着离线安装,每次安装都无法开机,要不就卡在锁屏界面,要不就黑屏,要不就卡在snaped界面,重装系统装了七八次终于成功了!
1.点击左下角那9个点,找到软件更新,点击。
2.找到附加驱动,选择一个你需要的nvidia driver版本
注意:安装的版本号后面是没有东西的,不要选择 “-server” 或者 “-open”
然后重启电脑,输入nvidia-smi , 就可以看到显卡驱动安装成功。
3.安装CUDA
下载地址:
CUDA Toolkit Archive | NVIDIA DeveloperPrevious releases of the CUDA Toolkit, GPU Computing SDK, documentation and developer drivers can be found using the links below. Please select the release you want from the list below, and be sure to check www.nvidia.com/drivers for more recent production drivers appropriate for your hardware configuration.https://developer.nvidia.com/cuda-toolkit-archive
这里我下载的是CUDA11.3.1,下载命令如下:
wget https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.19.01_linux.run
安装CUDA:
sudo bash cuda_11.3.1_465.19.01_linux.run --override
(1)他会问你已经有了一个nvidia驱动,是否继续,点击continue.
(2)输入accept
(3)进入CUDA_Installer界面,按上下箭头,选择 Driver那一项,回车取消勾选(因为我们刚才已经安装driver了,安装cuda默认会再安装一遍,这里我们就不需要了)。然后移动到 install,回车继续安装。
安装完成后,会有一个summary如下图,这个界面不要动,重新打开一个终端:
(4)在新终端输入
sudo gedit ~/.bashrc
在文件最下面加入两句话,这两个路径就是上面summary里面的,直接复制过来就可以:
export PATH="/usr/local/cuda-11.3/bin$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.3/lib64:$LD_LIBRARY_PATH"
(5)执行命令 source ~/.bashrc ,然后输入 nvcc -V ,就可以看到cuda 的版本了。
4.安装CUDNN
下载地址
https://developer.nvidia.com/rdp/cudnn-archivehttps://developer.nvidia.com/rdp/cudnn-archive
安装:
解压后将相关文件复制到usr/local/cuda-11
sudo cp cuda/include/cudnn.h /usr/local/cuda-11.3/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.3/lib64
sudo chmod a+r /usr/local/cuda-11.3/include/cudnn.h
sudo chmod a+r /usr/local/cuda-11.3/lib64/libcudnn*
5.安装Anaconda
下载:
Free Download | AnacondaAnaconda's open-source Distribution is the easiest way to perform Python/R data science and machine learning on a single machine.https://www.anaconda.com/download#downloads
安装:
sudo bash Anaconda_xxx.sh
安装过程注意事项:
(1)安装位置不要默认的root,因为会有权限问题,可以选择安装在/home目录下,记住这个安装目录,下面要用。
(2)安装完成后,会问你是否要自启动anaconda,直接回车就好(默认是no),因为我们要anaconda和ROS环境共存
(3)再次编辑bashrc文件
sudo gedit ~/.bashrc
在最后加入这样一句话,请替换为上面的anaconda3的安装目录:
alias setconda='. /home/anaconda3/bin/activate'
然后保存退出,在终端重新source一下: source ~/.bashrc
(4) 然后每次想用anaconda的时候,直接在终端输入“setconda”,就可以切换到(base)环境。
6.安装TensorRT
下载:
Log in | NVIDIA Developerhttps://developer.nvidia.com/tensorrt-download
安装:
(1) 解压压缩包:
tar -zxvf TensorRT-8.2.5.1.Linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz
(2)进入虚拟anaconda虚拟环境,这里我的环境名称是py39
setconda
conda activate py39
(3) 安装依赖
pip install 'pycuda<2021.1'
pip install onnxruntime-gpu==1.11
onnxruntime-gpu和CUDA版本的对应关系为:
NVIDIA - CUDA | onnxruntimeInstructions to execute ONNX Runtime applications with CUDAhttps://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html
(4) 配置环境
sudo gedit ~/.bashrc# 末尾添加以下两条路径,需根据解压的实际路径
export LD_LIBRARY_PATH=$PATH:/home/hhh/TensorRT-8.2.5.1/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=$PATH:/home/hhh/TensorRT-8.2.5.1/lib::$LIBRARY_PATH# 重新source一下
source ~/.bashrc
(5)安装TensorRT
cd TensorRT-8.2.5.1/python
# 按tab补全的时候到cp3就停了,我的python版本是3.9,所以我输入cp39再按tab补全
pip install tensorrt-8.2.5.1-cp39-none-linux_x86_64.whl # 安装依赖
cd TensorRT-8.2.5.1/graphsurgeon
pip install graphsurgeon-0.4.5-py2.py3-none-any.whl
7.安装ROS
打开终端,输入指令:
wget http://fishros.com/install -O fishros && . fishros
选择【1】安装ROS
安装好后,可以看到ROS和anaconda都可以使用:
8.参考
《conda和ros环境共存方法》
《【ubuntu环境配置】超详细ubuntu20.04/22.04安装nvidia驱动/CUDA/cudnn》
《TensorRT学习笔记--Ubuntu20.04安装TensorRT 8.2.5》
《Ubuntu20.04 显卡驱动、cuda安装》
《Ubuntu20.04LTS系统CUDA已经安装但nvcc -V显示command not found》
相关文章:

Ubuntu20.04安装Nvidia显卡驱动、CUDA11.3、CUDNN、TensorRT、Anaconda、ROS/ROS2
1.更换国内源 打开终端,输入指令: wget http://fishros.com/install -O fishros && . fishros 选择【5】更换系统源,后面还有一个要输入的选项,选择【0】退出,就会自动换源。 2.安装NVIDIA驱动 这一步最痛心…...

linux下使用crontab定时器,并且设置定时不执行的情况,附:项目启动遇到的一些问题和命令
打开终端,以root用户身份登录。 运行以下命令打开cron任务编辑器: crontab -e 如果首次编辑cron任务,会提示选择编辑器。选择你熟悉的编辑器,比如nano或vi,并打开相应的配置文件。 在编辑器中,添加一行类…...
linux下二进制安装docker最新版docker-24.0.6
一.基础环境 本次实操是公司技术培训下基于centos7.9操作系统安装docker最新版docker-24.0.6,下载地址是:https://download.docker.com/linux/static/stable/x86_64/docker-24.0.6.tgz 二. 下载Docker压缩包 mkdir -p /opt/docker-soft cd /opt/docker…...

计算机视觉 01(介绍)
一、深度学习 1.1 人工智能 1.2 人工智能,机器学习和深度学习的关系 机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。与机器学习算法的主要区别如下图所示[参考:黑…...
Java下部笔记
目录 一.双列集合 1.Map 2.Map的遍历方式 3.可变参数 4.Collection中的默认方法 5.不可变集合(map不会) 二.Stream流 1.获取stream流 2.中间方法 3.stream流的收集操作 4.方法引用 1.引用静态方法 2.引用成员方法 3.引用构造方法 4.使用类…...

链表基本操作
单链表简介 单链表结构 头指针是指向链表中第一个结点的指针 首元结点是指链表中存储第一个数据元素a1的结点 头结点是在链表的首元结点之前附设的一个结点;数据域内只放空表标志和表长等信息 单链表存储结构定义: typedef struct Lnode { ElemTyp…...

Linux学习笔记-Ubuntu系统下配置用户ssh只能访问git仓库
目录 一、基本信息1.1 系统信息1.2 git版本[^1]1.2.1 服务器端git版本1.2.2 客户端TortoiseGit版本1.2.3 客户端Git for windows版本 二、创建git用户和群组[^2]2.1 使用groupadd创建群组2.2 创建git用户2.2.1 使用useradd创建git用户2.2.2 配置新建的git用户ssh免密访问 2.3 创…...

央媒发稿不能改?媒体发布新闻稿有哪些注意点
传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 “央媒发稿不能改”是媒体行业和新闻传播领域的普遍理解。央媒,即中央主要媒体,是权威性的新闻源,当这些媒体发布新闻稿或报道时,其他省、…...

计算机竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)
文章目录 0 前言1 课题说明2 效果展示3 具体实现4 关键代码实现5 算法综合效果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的数学公式识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学…...

KPM算法
概念 KMP(Knuth–Morris–Pratt)算法是一种字符串匹配算法,用于在一个主文本字符串中查找一个模式字符串的出现位置。KMP算法通过利用模式字符串中的重复性,避免无意义的字符比较,从而提高效率。 KMP算法的核心思想是…...

全流程GMS地下水数值模拟及溶质(包含反应性溶质)运移模拟技术教程
详情点击公众号链接:全流程GMS地下水数值模拟及溶质(包含反应性溶质)运移模拟技术教程 前言 GMS三维地质结构建模 GMS地下水流数值模拟 GMS溶质运移数值模拟与反应性溶质运移模 详情 1.GMS的建模数据的收集、数据预处理以及格式等ÿ…...

GE D20 EME 10BASE-T电源模块产品特点
GE D20 EME 10BASE-T 电源模块通常是工业自动化和控制系统中的一个关键组件,用于为系统中的各种设备和模块提供电源。以下是可能包括在 GE D20 EME 10BASE-T 电源模块中的一些产品特点: 电源输出:D20 EME 模块通常提供一个或多个电源输出通道…...

游戏工作时d3dcompiler_47.dll缺失怎么修复?5种修复方法分享
游戏提示 d3dcompiler_47.dll 缺失的困扰,相信许多玩家都遇到过。这种情况通常会导致游戏无法正常运行,给玩家带来很大的不便。那么,该如何解决这个问题呢?小编将为大家介绍几种解决方法,希望对大家有所帮助。 首先&am…...

关于激光探测器光斑质心算法在FPGA硬件的设计
目录 0引言 1CCD采集图像质心算法 2基于FPGA的图像质心算法 3仿真结果与分析 4结论 0引言 在一些姿态检测的实际应用中,需要在被测对象上安装激光探测器[1],利用CCD相机捕捉激光光斑来检测观测对象的实际情况,光斑图像质心坐标的提取是图…...

理清SpringBoot CURD处理逻辑、顺序
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! 理清SpringBoot CURD处理逻辑、顺序 Controller(控制器): 控制器接收来自客户端的请求,并负责处理请求的路由和参数解析…...
缓存读写淘汰算法W-TinyLFU算法
在W-TinyLFU中,每个缓存项都会被赋予一个权重。这个权重可以表示缓存项的大小、使用频率、是否是热数据等因素。每次需要淘汰缓存时,W-TinyLFU会选择小于一定阈值的权重的缓存项进行淘汰,以避免淘汰热数据。 另外,W-TinyLFU也会根…...

C++中的 throw详解
在《C++异常处理》一节中,我们讲到了 C++ 异常处理的流程,具体为: 抛出(Throw)--> 检测(Try) --> 捕获(Catch) 异常必须显式地抛出,才能被检测和捕获到;如果没有显式的抛出,即使有异常也检测不到。在 C++ 中,我们使用 throw 关键字来显式地抛出异常,它的用…...
vue 封装Table组件
基于element-plus UI 框架封装一个table组件 在项目目录下的components新建一个Table.vue <template><section class"wrap"><el-tableref"table":data"tableData" v-loading"loading" style"width: 100%":…...
MySQL主从复制错误
当在MySQL的多线程复制中遇到错误时,你可能会看到上述的错误信息。错误的核心在于从服务器上的工作线程在尝试执行一个特定的事务时遇到了问题。 为了解决这个问题,你可以采取以下步骤: 查看MySQL的错误日志:错误日志可能会提供更…...
Redis群集
目录 1、redis群集三种模式 2、Redis 主从复制 2.1 主从复制的作用 2.2 主从复制流程 2.3 搭建Redis 主从复制 3、Redis 哨兵模式 3.1 哨兵模式的作用 3.2 故障转移机制 3.3 主节点的选举 4、Redis 群集模式 4.1 集群的作用 4.2 Redis集群的数据分片 4.3 搭建Redis…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...