当前位置: 首页 > news >正文

【深度学习实验】线性模型(五):使用Pytorch实现线性模型:基于鸢尾花数据集,对模型进行评估(使用随机梯度下降优化器)

目录

一、实验介绍

 二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入库

1. 线性模型linear_model

2. 损失函数loss_function

3. 鸢尾花数据预处理

4. 初始化权重和偏置

5. 优化器

6. 迭代

7. 测试集预测

8. 实验结果评估

9. 完整代码


一、实验介绍

        线性模型是机器学习中最基本的模型之一,通过对输入特征进行线性组合来预测输出。本实验旨在展示使用随机梯度下降优化器训练线性模型的过程,并评估模型在鸢尾花数据集上的性能。

 二、实验环境

        本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

0. 导入库

import torch
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn import metrics
  • PyTorch
    • 优化器模块(optim
  • scikit-learn
    • 数据模块(load_iris)
    • 数据划分(train_test_split)
    • 评估指标模块(metrics

1. 线性模型linear_model

        该函数接受输入数据x,使用随机生成的权重w和偏置b,计算输出值output。这里的线性模型的形式为 output = x * w + b

def linear_model(x):return torch.matmul(x, w) + b

2. 损失函数loss_function

      这里使用的是均方误差(MSE)作为损失函数,计算预测值与真实值之间的差的平方。

def loss_function(y_true, y_pred):loss = (y_pred - y_true) ** 2return loss

3. 鸢尾花数据预处理

  • 加载鸢尾花数据集并进行预处理

    • 将数据集分为训练集和测试集

    • 将数据转换为PyTorch张量

iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
x_train = torch.tensor(x_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)
x_test = torch.tensor(x_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)

4. 初始化权重和偏置

w = torch.rand(1, 1, requires_grad=True)
b = torch.randn(1, requires_grad=True)

5. 优化器

        使用随机梯度下降(SGD)优化器进行模型训练,指定学习率和待优化的参数w, b。

optimizer = optim.SGD([w, b], lr=0.01) # 使用SGD优化器

        

6. 迭代

num_epochs = 100
for epoch in range(num_epochs):optimizer.zero_grad()       # 梯度清零prediction = linear_model(x_train, w, b)loss = loss_function(y_train, prediction)loss.mean().backward()      # 计算梯度optimizer.step()            # 更新参数if (epoch + 1) % 10 == 0:print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.mean().item()}")
  • 在每个迭代中:

    • 将优化器的梯度缓存清零,然后使用当前的权重和偏置对输入 x 进行预测,得到预测结果 prediction

    • 使用 loss_function 计算预测结果与真实标签之间的损失,得到损失张量 loss

    • 调用 loss.mean().backward() 计算损失的平均值,并根据计算得到的梯度进行反向传播。

    • 调用 optimizer.step() 更新权重和偏置,使用优化器进行梯度下降更新。

    • 每隔 10 个迭代输出当前迭代的序号、总迭代次数和损失的平均值。

7. 测试集预测

        在测试集上进行预测,使用训练好的模型对测试集进行预测

with torch.no_grad():test_prediction = linear_model(x_test, w, b)test_prediction = torch.round(test_prediction) # 四舍五入为整数test_prediction = test_prediction.detach().numpy()

8. 实验结果评估

  • 使用 metrics 模块计算分类准确度(accuracy)、精确度(precision)、召回率(recall)和F1得分(F1 score)。
  • 输出经过优化后的参数 w 和 b,以及在测试集上的评估指标。
accuracy = metrics.accuracy_score(y_test, test_prediction)
precision = metrics.precision_score(y_test, test_prediction, average='macro')
recall = metrics.recall_score(y_test, test_prediction, average='macro')
f1 = metrics.f1_score(y_test, test_prediction, average='macro')
print("The optimized parameters are:")
print("w:", w.flatten().tolist())
print("b:", b.item())print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)

        本实验使用随机梯度下降优化器训练线性模型,并在鸢尾花数据集上取得了较好的分类性能。实验结果表明,经过优化后的模型能够对鸢尾花进行准确的分类,并具有较高的精确度、召回率和F1得分。

9. 完整代码

import torch
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn import metricsdef linear_model(x, w, b):return torch.matmul(x, w) + bdef loss_function(y_true, y_pred):loss = (y_pred - y_true) ** 2return loss# 加载鸢尾花数据集并进行预处理
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
x_train = torch.tensor(x_train, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.float32).view(-1, 1)
x_test = torch.tensor(x_test, dtype=torch.float32)
y_test = torch.tensor(y_test, dtype=torch.float32).view(-1, 1)w = torch.rand(x_train.shape[1], 1, requires_grad=True)
b = torch.randn(1, requires_grad=True)
optimizer = optim.SGD([w, b], lr=0.01) # 使用SGD优化器num_epochs = 100
for epoch in range(num_epochs):optimizer.zero_grad()       # 梯度清零prediction = linear_model(x_train, w, b)loss = loss_function(y_train, prediction)loss.mean().backward()      # 计算梯度optimizer.step()            # 更新参数if (epoch + 1) % 10 == 0:print(f"Epoch {epoch+1}/{num_epochs}, Loss: {loss.mean().item()}")# 在测试集上进行预测
with torch.no_grad():test_prediction = linear_model(x_test, w, b)test_prediction = torch.round(test_prediction) # 四舍五入为整数test_prediction = test_prediction.detach().numpy()accuracy = metrics.accuracy_score(y_test, test_prediction)
precision = metrics.precision_score(y_test, test_prediction, average='macro')
recall = metrics.recall_score(y_test, test_prediction, average='macro')
f1 = metrics.f1_score(y_test, test_prediction, average='macro')
print("The optimized parameters are:")
print("w:", w.flatten().tolist())
print("b:", b.item())print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)

相关文章:

【深度学习实验】线性模型(五):使用Pytorch实现线性模型:基于鸢尾花数据集,对模型进行评估(使用随机梯度下降优化器)

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入库 1. 线性模型linear_model 2. 损失函数loss_function 3. 鸢尾花数据预处理 4. 初始化权重和偏置 5. 优化器 6. 迭代 7. 测试集预测 8. 实验结果评估 9. 完整代码 一、实验介…...

ADB底层原理

介绍 adb的全称为Android Debug Bridge,就是起到调试桥的作用。通过adb我们可以在Eclipse/Android Studio中方便通过DDMS来调试Android程序,说白了就是debug工具。adb是android sdk里的一个工具, 用这个工具可以直接操作管理android模拟器或者真实的and…...

etcd之读性能主要影响因素

1、Raft模块-线性读ReadIndex-节点之间的RTT延时、磁盘IO 线性读时Follower节点首先会向Raft 模块发送ReadIndex请求,此时Raft模块会先向各节点发送心跳确认,一半以上节点确认 Leader 身份后由leader节点将已提交日志索引 (committed index) 封装成 Rea…...

【Stable Diffusion】安装 Comfyui 之 window版

序言 由于stable diffusion web ui无法做到对流程进行控制,只是点击个生成按钮后,一切都交给AI来处理。但是用于生产生活是需要精细化对各个流程都要进行控制的。 故也就有个今天的猪脚:Comfyui 步骤 下载comfyui项目配置大模型和vae下载…...

Ansys Zemax | 如何建立二向分色分光镜

分光镜(Beam splitter)可被运用在许多不同的场合。一般而言,入射光抵达二向分色分光镜(dichroic beam splitter)时,会根据波长的差异产生穿透或反射的现象。这篇文章将说明如何在OpticStudio的非序列模式(non-sequential mode)中建立二向分色分光镜&…...

Mybatis学习笔记8 查询返回专题

1.返回实体类 2.返回List<实体类> 3.返回Map 4.返回List<Map> 5.返回Map<String,Map> 6.resultMap结果集映射 7.返回总记录条数 新建模块 依赖 目录结构 1.返回实体类 如果返回多条,用单个实体接收会出异常 2.返回List<实体类> 即使返回一条记…...

【测试开发】基础篇 · 专业术语 · 软件测试生命周期 · bug的描述 · bug的级别 · bug的生命周期 · 处理争执

【测试开发】基础篇 文章目录 【测试开发】基础篇1. 软件测试生命周期1.1 软件生命周期1.2 软件测试生命周期 2. 描述bug3. 如何定义bug的级别3.1 为什么要对bug进行级别划分3.2 bug的一些常见级别 4. bug的生命周期5. 产生争执这么怎么办&#xff08;处理人际关系&#xff09;…...

​bing许少辉乡村振兴战略下传统村落文化旅游设计images

​bing许少辉乡村振兴战略下传统村落文化旅游设计images...

第三十一章 Classes - 继承规则

第三十一章 Classes - 继承规则 继承规则 与其他基于类的语言一样&#xff0c;可以通过继承组合多个类定义。 类定义可以扩展&#xff08;或继承&#xff09;多个其他类。这些类又可以扩展其他类。 请注意&#xff0c;类不能继承 Python 中定义的类&#xff08;即 .py 文件中…...

华为云HECS安装docker并安装mysql

1、运行安装指令 yum install docker都选择y&#xff0c;直到安装成功 2、查看是否安装成功 运行版本查看指令&#xff0c;显示docker版本&#xff0c;证明安装成功 docker --version 3、启用并运行docker 3.1启用docker指令 systemctl enable docker 3.2 运行docker指令…...

MQ - 04 基础篇_存储_消息数据和元数据的存储设计

文章目录 导图概述元数据信息的存储消息数据的存储数据存储结构设计思路一 (Kafka的方案)思路二 (RocketMQ、RabbitMQ 和 Pulsar 的底层存储 BookKeeper 采用的方案)消息数据的分段实现根据偏移量定位根据索引定位 (RabbitMQ 和 RocketMQ的思路)使用场景消息数据存储格式…...

JavaScript:隐式转换、显示转换、隐式操作、显示操作

一、理解js隐式转换 JavaScript 中的隐式转换是指不需要显式地调用转换函数&#xff0c;而是在执行期间自动发生的数据类型的转换。即在使用不同类型的值进行操作时&#xff0c;JavaScript会自动进行类型转换。这种转换通常发生在不同数据类型之间进行运算或比较时。 序号分类…...

2023全新TwoNav开源网址导航系统源码 | 去授权版

2023全新TwoNav开源网址导航系统源码 已过授权 所有功能可用 测试环境&#xff1a;NginxPHP7.4MySQL5.6 一款开源的书签导航管理程序&#xff0c;界面简洁&#xff0c;安装简单&#xff0c;使用方便&#xff0c;基础功能免费。 TwoNav可帮助你将浏览器书签集中式管理&#…...

Android 12 源码分析 —— 应用层 六(StatusBar的UI创建和初始化)

Android 12 源码分析 —— 应用层 六&#xff08;StatusBar的UI创建和初始化) 在前面的文章中,我们分别介绍了Layout整体布局,以及StatusBar类的初始化.前者介绍了整体上面的布局,后者介绍了三大窗口的创建的入口处,以及需要做的准备工作.现在我们分别来细化三大窗口的UI创建和…...

华为云ROMA Connect亮相Gartner®全球应用创新及商业解决方案峰会,助力企业应用集成和数字化转型

9月13日-9月14日 Gartner全球应用创新及商业解决方案峰会在伦敦举行 本届峰会以“重塑软件交付&#xff0c;驱动业务价值”为主题&#xff0c;全球1000多位业内专家交流最新的企业应用、软件工程、解决方案架构、集成与自动化、API等企业IT战略和新兴技术热门话题。 9月13日…...

虚拟线上发布会带来颠覆性新体验,3D虚拟场景直播迸发品牌新动能

虚拟线上发布会是近年来在数字化营销领域备受关注的形式&#xff0c;而随着虚拟现实技术的不断进步&#xff0c;3D虚拟场景直播更成为了品牌宣传、推广的新选择。可以说&#xff0c;虚拟线上发布会正在以其颠覆性的新体验&#xff0c;为品牌带来全新的活力。 1.突破时空限制&am…...

Linux arm64 pte相关宏

文章目录 一、pte 和 pfn1.1 pte_pfn1.2 pfn_pte 二、其他宏参考资料 一、pte 和 pfn // linux-5.4.18/arch/arm64/include/asm/pgtable.h#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) #define pfn_pte(pfn,prot) \__pte(__phys_to_pte_val((phys_addr_t)…...

MVCC:多版本并发控制案例分析(一)

&#xff08;笔记总结自b站马士兵教育课程&#xff09; 一、简介 MVCC&#xff1a;全称multi-version Concurency control&#xff0c;多版本并发控制&#xff0c;是为了解决并发读写问题存在的。MVCC的实现原理由三部分组成&#xff1a;隐藏字段、undolog、readview。 二、概…...

以数据为中心的安全市场快速增长

根据Adroit Market Research的数据&#xff0c;2021年全球以数据为中心的安全市场规模估计为27.6亿美元&#xff0c;预计到2030年将增长至393.48亿美元&#xff0c;2021年至2030年的复合年增长率为30.9%。 研究人员表示&#xff0c;以数据为中心的安全强调保护数据本身&#x…...

AUTOSAR汽车电子嵌入式编程精讲300篇-经典 AUTOSAR 安全防御能力的分析及改善(下)

目录 4.4.2 Security 攻击 4.4.3 Security 要求 4.4.4 SDSA 有效性验证 经典 AUTOSAR 安全防御能力分析...

AI绘图提示词Stable Diffusion Prompt 笔记

基础 提示词分为正向提示词&#xff08;positive prompt&#xff09;和反向提示词&#xff08;negative prompt&#xff09;&#xff0c;用来告诉AI哪些需要&#xff0c;哪些不需要词缀的权重默认值都是1&#xff0c;从左到右依次减弱&#xff0c;权重会影响画面生成结果。AI …...

xml元素值需要保留space

XmlReaderSettings.IgnoreWhitespace 属性 如果忽略空白&#xff0c;则为 true&#xff1b;否则为 false。 默认值为 false。 示例 下面创建一个设置对象&#xff0c;该对象可用于构造一个读取器&#xff0c;该读取器去除处理指令、注释和微不足道的空白。 StreamReader tex…...

Eclipse开源代码下载

当前插件开发&#xff0c;需要修改eclipse源码&#xff0c;如需要修改remote相关的代码&#xff0c;所以需要下载相关源码。网上大多资料都说的不清不楚的&#xff0c;也可能我太小白&#xff0c;不明白&#xff0c;反正就是折腾了一两天才感觉有点思路&#xff0c;改如何找源码…...

python多线程、进程

1、 并行和并发 &#xff08;1&#xff09;并发&#xff1a;一定周期内&#xff0c;多个任务来回切换执行&#xff0c;宏观上形成“该周期内有多个任务在同时进行”&#xff1b;但同一时间点&#xff0c;只有一个任务在执行。 举例&#xff1a; 你想在2小时内同时完成做饭、扫…...

Vue基础之模板语法介绍

前言 上篇我分享了关于Vue的入门&#xff0c;简单的入了个门。本篇文章将要分享的内容为Vue的模板语法。 一、插值 1.1、文本 1.2、html 1.3、属性 1.4、class、style绑定 1.5、表达式 在Vue的模板语法中&#xff0c;插值是一种常用的方式来动态地将数据渲染到视图中。Vue使用双…...

【SLAM】 前端-视觉里程计之特征点

前端-视觉里程计之特征点 参考资料&#xff1a; 以不变应万变&#xff1a;前端-视觉里程计之特征点 视觉SLAM——特征点法 task05 本次了解了特征点是由关键子和描述子组成&#xff0c;并且对比了SIFT、SURF等七种获取特征点的方法&#xff0c;同时对比了SIFT、SURF和ORB方法…...

Android笔记(二十九):利用python自动生成多语言

背景 项目需要支持十几种多语言&#xff0c;而且每个版本的新功能ui都有很多地方需要多语言&#xff0c;如果手动添加非常耗时&#xff0c;于是设计了一个python脚本&#xff0c;通过excel表格转化多语言到项目values/strings文件内 步骤 android工程项目结构 脚本位于langu…...

【C++STL基础入门】list的运算符重载和关于list的算法

文章目录 前言一、list运算符1.1 逻辑运算符1.2 赋值运算符 二、list相关算法2.1 查找函数总结 前言 C标准模板库&#xff08;STL&#xff09;是一组强大而灵活的工具&#xff0c;用于处理数据结构和算法。其中&#xff0c;std::list是STL中的一个重要容器&#xff0c;它实现了…...

查找内轮廓(孔洞)

一 说明 findContours( InputOutputArray image, OutputArrayOfArrays contours,OutputArray hierarchy, int mode,int method, Point offset=Point());参数列表中有个数据结构参数:hierarchy(译层次结构),hierarchy是一个向量,其元素个数与查找到的轮廓总数相同,每一个…...

Git(6)——GitHub

目录 一、简介 二、概要 三、注册 ​四、创建仓库 五、推送本地代码 六、拉取远端代码 一、简介 在Git&#xff08;5&#xff09;中&#xff0c;我们已经对Git分支的概念和用法有了一定了解&#xff0c;对于在本地进行代码版本管理&#xff0c;其实当前所学的东西基本已经…...

昆山企业做网站/自动推广软件

###题目描述 给定n个整数的一个数组S&#xff0c;S中是否有元素a、b和c满足abc0&#xff1f;找出数组中所有满足加和为0的不同的三个数组合。 题目链接&#xff1a;三数之和 题目标签&#xff1a;数组 双指针 注意&#xff0c;(a,b,c)中的元素必须是非降序的排列方式(即&…...

建设电影网站/网站百度

MySQL凭借着出色的性能、低廉的成本、丰富的资源&#xff0c;已经成为绝大多数互联网公司的首选关系型数据库。虽然性能出色&#xff0c;但所谓“好马配好鞍”&#xff0c;如何能够更好的使用它&#xff0c;已经成为开发工程师的必修课&#xff0c;我们经常会从职位描述上看到诸…...

网站建设免费代理/百度资源分享网页

首先第一步&#xff1a;创建工程。此处省略一百多字。 第二步&#xff1a;在布局文件layout里面创建TabHost。这里会出现问题&#xff1a; 修正&#xff1a; 第三步&#xff1a;初始化tabhost并添加tanhost。 转载于:https://www.cnblogs.com/IvesHe/p/4945662.html...

简洁的网站案例/深圳营销策划公司十强

丹阳新闻网报道 丹阳交警告诉您&#xff1a;目前&#xff0c;市区部分路段已安装了高清电子抓拍系统&#xff0c;正式试点抓拍驾驶机动车斑马线前不礼让行人的交通违法行为&#xff01;从今年3月份开始&#xff0c;丹阳交警大队在市区185条主次干道斑马线前漆划了“礼让行人”…...

wordpress 仿虎嗅/凡科建站客服电话

什么是授权? 即该用户是否有权限访问某个资源.(即校验权限)Shiro权限的实现方式 1. 硬编码方式:实现授权访问校验. 在自定义中的realm中的授权方法中进行编写代码.根据传进来的PrincipalCollection获取用户对象.该授权方法的返回值是AuthorizationInfo,该对象是一个接口,因此我…...

镇江市建设工程管理处网站/厦门seo公司到1火星

入门篇 1.1 Python语言程序设计Python是一种面向对象、解释型的计算机程序设计高级语言&#xff0c;其语法简洁清晰&#xff0c;方便对数据进行组织和处理&#xff1b;具有丰富和强大的库&#xff0c;可以支持很多日常问题的程序实现。因其解释性语言的本质&#xff0c;Python在…...