Linux arm64 pte相关宏
文章目录
- 一、pte 和 pfn
- 1.1 pte_pfn
- 1.2 pfn_pte
- 二、其他宏
- 参考资料
一、pte 和 pfn
// linux-5.4.18/arch/arm64/include/asm/pgtable.h#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot) \__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
1.1 pte_pfn
/* PAGE_SHIFT determines the page size */
#define PAGE_SHIFT CONFIG_ARM64_PAGE_SHIFT
CONFIG_ARM64_PAGE_SHIFT=12
通常arm64架构 PAGE_SHIFT = 12
#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
用于从页表项(Page Table Entry,PTE)中提取页帧号(Page Frame Number,PFN)。通过将PTE转换为物理地址,然后右移位来获得页帧号。页帧号表示物理页在内存中的位置,用于访问和管理物理内存。
#define PTE_ADDR_LOW (((_AT(pteval_t, 1) << (48 - PAGE_SHIFT)) - 1) << PAGE_SHIFT)#define PTE_ADDR_MASK PTE_ADDR_LOW
#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
__pte_to_phys宏根据pte来获取对应的物理地址,用于从页表项(Page Table Entry,PTE)中提取低位的物理地址。
PTE_ADDR_LOW这个宏定义的步骤如下:
(1)_AT(pteval_t, 1):这是一个类型转换宏,将常量1强制转换为pteval_t类型。pteval_t是一个代表页表项的数据类型,在这里假设它是一个无符号整数类型。
(2)48 - PAGE_SHIFT:PAGE_SHIFT是一个常量,表示页的大小的位移量。这个表达式计算了48减去页的大小的位移量,得到了用于掩码操作的位数。
(3)(_AT(pteval_t, 1) << (48 - PAGE_SHIFT)):将1左移上一步计算得到的位数,得到一个掩码,只有最低的一些位被设置为1。
(4)(((_AT(pteval_t, 1) << (48 - PAGE_SHIFT)) - 1) << PAGE_SHIFT):将上一步得到的掩码减去1,得到一个更低位全为1的掩码。然后将这个掩码左移PAGE_SHIFT位,相当于将物理地址的低位清零,得到一个基地址。
这个宏定义的作用是根据页表项的位宽和页的大小,计算出页表项中低位的物理地址。这个物理地址是页表项中存储的物理页的基地址,用于访问对应的物理内存。
让我们通过一个示例来分解宏的工作原理:
(1)假设PAGE_SHIFT的值是12,表示页面大小为4KB(2^12 = 4KB)。
(2)_AT(pteval_t, 1) << (48 - PAGE_SHIFT)表达式计算出一个掩码,低位被设置为1。例如,如果pteval_t是一个无符号64位整数,_AT(pteval_t, 1)的结果为1ULL(无符号长整型),那么掩码的值将是0xFFFFFFFFFFFFF000。
(3)从掩码中减去1,得到0xFFFFFFFFFFFFEFFF。
(4)将掩码左移PAGE_SHIFT位(在这个示例中为12位),有效地将低12位清零,结果为0xFFFFFFFFFFFFF000。这代表了物理页的基地址。
(5)执行位与操作pte & PTE_ADDR_LOW,保留了PTE中物理地址的低位,丢弃了高位。
通过这种方式应用宏,你可以从页表项中提取物理地址的低位。得到的值表示与PTE相关联的物理页的基地址。
1.2 pfn_pte
typedef struct { pteval_t pgprot; } pgprot_t;
#define pgprot_val(x) ((x).pgprot)
#define __phys_to_pte_val(phys) (phys)#define pfn_pte(pfn,prot) \__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
用于将页帧号(Page Frame Number,PFN)和页面保护属性(Page Protection,prot)转换为页表项(Page Table Entry,PTE)。
这个宏定义的作用是将PFN和页面保护属性转换为PTE。它通过将PFN左移位得到物理地址,然后将物理地址转换为PTE的值。接着,将页面保护属性的值与PTE的值进行按位或操作,得到最终的PTE。这个PTE可以用于更新或设置页表中的条目,以实现对应PFN的映射和页面的保护。
二、其他宏
(1)
#define pte_none(pte) (!pte_val(pte))
#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
pte_none(pte): 这个宏判断给定的PTE是否为空。它使用了pte_val(pte)宏,将PTE转换为数值,然后判断该数值是否为0。如果数值为0,表示该PTE为空,返回值为真(非零);否则返回假(0)。
pte_clear(mm, addr, ptep): 这个宏用于将给定的PTE清空,即将其设置为0。它使用了set_pte(ptep, __pte(0)),将给定的PTE指针(ptep)设置为值为0的新的PTE。这样就清除了该PTE所指向的页表项。
pte_page(pte): 这个宏用于从PTE中获取对应的页结构(Page)指针。它使用了pte_pfn(pte)宏获取PTE的页帧号(PFN),并将其传递给pfn_to_page()函数,以获取与该PFN对应的页结构指针。
(2)
// linux-5.4.18/arch/arm64/include/asm/pgtable-hwdef.h/** Level 3 descriptor (PTE).*/
#define PTE_VALID (_AT(pteval_t, 1) << 0)
#define PTE_TYPE_MASK (_AT(pteval_t, 3) << 0)
#define PTE_TYPE_PAGE (_AT(pteval_t, 3) << 0)
#define PTE_TABLE_BIT (_AT(pteval_t, 1) << 1)
#define PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
#define PTE_RDONLY (_AT(pteval_t, 1) << 7) /* AP[2] */
#define PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
#define PTE_AF (_AT(pteval_t, 1) << 10) /* Access Flag */
#define PTE_NG (_AT(pteval_t, 1) << 11) /* nG */
#define PTE_DBM (_AT(pteval_t, 1) << 51) /* Dirty Bit Management */
#define PTE_CONT (_AT(pteval_t, 1) << 52) /* Contiguous range */
#define PTE_PXN (_AT(pteval_t, 1) << 53) /* Privileged XN */
#define PTE_UXN (_AT(pteval_t, 1) << 54) /* User XN */
#define PTE_HYP_XN (_AT(pteval_t, 1) << 54) /* HYP XN */
/** The following only work if pte_present(). Undefined behaviour otherwise.*/
#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
这些宏定义用于处理页表项(Page Table Entry,PTE),但前提是PTE必须处于有效状态。否则,行为未定义。
pte_present(pte): 这个宏用于判断给定的PTE是否为有效状态(即存在于内存中)。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_VALID和PTE_PROT_NONE是否同时存在于该数值中。如果两个位都存在,表示PTE为有效状态,返回值为真(非零);否则返回假(0)。
pte_young(pte): 这个宏用于判断给定的PTE是否为"young"状态,即表示该页最近被访问过。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_AF是否存在于该数值中。如果存在,表示PTE为"young"状态,返回值为真(非零);否则返回假(0)。
pte_special(pte): 这个宏用于判断给定的PTE是否为特殊标记状态。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_SPECIAL是否存在于该数值中。如果存在,表示PTE为特殊标记状态,返回值为真(非零);否则返回假(0)。
pte_write(pte): 这个宏用于判断给定的PTE是否为可写状态。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_WRITE是否存在于该数值中。如果存在,表示PTE为可写状态,返回值为真(非零);否则返回假(0)。
pte_user_exec(pte): 这个宏用于判断给定的PTE是否允许用户态执行。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_UXN是否不存在于该数值中。如果不存在,表示PTE允许用户态执行,返回值为真(非零);否则返回假(0)。
pte_cont(pte): 这个宏用于判断给定的PTE是否为连续标记状态。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_CONT是否存在于该数值中。如果存在,表示PTE为连续标记状态,返回值为真(非零);否则返回假(0)。
pte_devmap(pte): 这个宏用于判断给定的PTE是否为设备映射标记状态。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_DEVMAP是否存在于该数值中。如果存在,表示PTE为设备映射标记状态,返回值为真(非零);否则返回假(0)。
#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
#define pte_valid_not_user(pte) \((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
#define pte_valid_young(pte) \((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF))
#define pte_valid_user(pte) \((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
这些宏定义用于进一步处理页表项(Page Table Entry,PTE),提供了更多的状态判断和标记位操作。
下面是每个宏定义的说明:
pte_hw_dirty(pte): 这个宏用于判断给定的PTE是否为硬件脏页状态。它使用了pte_write(pte)宏判断PTE是否可写,然后通过位掩码检查PTE_RDONLY是否不存在于PTE的数值中。如果PTE可写且不是只读状态,表示PTE为硬件脏页状态,返回值为真(非零);否则返回假(0)。
pte_sw_dirty(pte): 这个宏用于判断给定的PTE是否为软件脏页状态。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_DIRTY是否存在于该数值中。如果存在,表示PTE为软件脏页状态,返回值为真(非零);否则返回假(0)。
pte_dirty(pte): 这个宏用于判断给定的PTE是否为脏页状态(硬件脏页或软件脏页)。它使用了pte_sw_dirty(pte)宏判断PTE是否为软件脏页,以及pte_hw_dirty(pte)宏判断PTE是否为硬件脏页。如果PTE为软件脏页或硬件脏页状态,返回值为真(非零);否则返回假(0)。
pte_valid(pte): 这个宏用于判断给定的PTE是否为有效状态。它使用了pte_val(pte)宏将PTE转换为数值,然后通过位掩码检查PTE_VALID是否存在于该数值中。如果存在,表示PTE为有效状态,返回值为真(非零);否则返回假(0)。
pte_valid_not_user(pte): 这个宏用于判断给定的PTE是否为有效状态且不是用户态的。它使用了位掩码检查PTE_VALID和PTE_USER是否同时存在于PTE的数值中。如果同时存在,表示PTE为有效状态且不是用户态的,返回值为真(非零);否则返回假(0)。
pte_valid_young(pte): 这个宏用于判断给定的PTE是否为有效状态且是"young"状态。它使用了位掩码检查PTE_VALID和PTE_AF是否同时存在于PTE的数值中。如果同时存在,表示PTE为有效状态且是"young"状态,返回值为真(非零);否则返回假(0)。
pte_valid_user(pte): 这个宏用于判断给定的PTE是否为有效状态且是用户态的。它使用了位掩码检查PTE_VALID和PTE_USER是否同时存在于PTE的数值中。如果同时存在,表示PTE为有效状态且是用户态的,返回值为真(非零);否则返回假(0)。
参考资料
Linux 5.4.18
相关文章:
Linux arm64 pte相关宏
文章目录 一、pte 和 pfn1.1 pte_pfn1.2 pfn_pte 二、其他宏参考资料 一、pte 和 pfn // linux-5.4.18/arch/arm64/include/asm/pgtable.h#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) #define pfn_pte(pfn,prot) \__pte(__phys_to_pte_val((phys_addr_t)…...
MVCC:多版本并发控制案例分析(一)
(笔记总结自b站马士兵教育课程) 一、简介 MVCC:全称multi-version Concurency control,多版本并发控制,是为了解决并发读写问题存在的。MVCC的实现原理由三部分组成:隐藏字段、undolog、readview。 二、概…...

以数据为中心的安全市场快速增长
根据Adroit Market Research的数据,2021年全球以数据为中心的安全市场规模估计为27.6亿美元,预计到2030年将增长至393.48亿美元,2021年至2030年的复合年增长率为30.9%。 研究人员表示,以数据为中心的安全强调保护数据本身&#x…...
AUTOSAR汽车电子嵌入式编程精讲300篇-经典 AUTOSAR 安全防御能力的分析及改善(下)
目录 4.4.2 Security 攻击 4.4.3 Security 要求 4.4.4 SDSA 有效性验证 经典 AUTOSAR 安全防御能力分析...

AI绘图提示词Stable Diffusion Prompt 笔记
基础 提示词分为正向提示词(positive prompt)和反向提示词(negative prompt),用来告诉AI哪些需要,哪些不需要词缀的权重默认值都是1,从左到右依次减弱,权重会影响画面生成结果。AI …...
xml元素值需要保留space
XmlReaderSettings.IgnoreWhitespace 属性 如果忽略空白,则为 true;否则为 false。 默认值为 false。 示例 下面创建一个设置对象,该对象可用于构造一个读取器,该读取器去除处理指令、注释和微不足道的空白。 StreamReader tex…...

Eclipse开源代码下载
当前插件开发,需要修改eclipse源码,如需要修改remote相关的代码,所以需要下载相关源码。网上大多资料都说的不清不楚的,也可能我太小白,不明白,反正就是折腾了一两天才感觉有点思路,改如何找源码…...
python多线程、进程
1、 并行和并发 (1)并发:一定周期内,多个任务来回切换执行,宏观上形成“该周期内有多个任务在同时进行”;但同一时间点,只有一个任务在执行。 举例: 你想在2小时内同时完成做饭、扫…...

Vue基础之模板语法介绍
前言 上篇我分享了关于Vue的入门,简单的入了个门。本篇文章将要分享的内容为Vue的模板语法。 一、插值 1.1、文本 1.2、html 1.3、属性 1.4、class、style绑定 1.5、表达式 在Vue的模板语法中,插值是一种常用的方式来动态地将数据渲染到视图中。Vue使用双…...
【SLAM】 前端-视觉里程计之特征点
前端-视觉里程计之特征点 参考资料: 以不变应万变:前端-视觉里程计之特征点 视觉SLAM——特征点法 task05 本次了解了特征点是由关键子和描述子组成,并且对比了SIFT、SURF等七种获取特征点的方法,同时对比了SIFT、SURF和ORB方法…...

Android笔记(二十九):利用python自动生成多语言
背景 项目需要支持十几种多语言,而且每个版本的新功能ui都有很多地方需要多语言,如果手动添加非常耗时,于是设计了一个python脚本,通过excel表格转化多语言到项目values/strings文件内 步骤 android工程项目结构 脚本位于langu…...

【C++STL基础入门】list的运算符重载和关于list的算法
文章目录 前言一、list运算符1.1 逻辑运算符1.2 赋值运算符 二、list相关算法2.1 查找函数总结 前言 C标准模板库(STL)是一组强大而灵活的工具,用于处理数据结构和算法。其中,std::list是STL中的一个重要容器,它实现了…...
查找内轮廓(孔洞)
一 说明 findContours( InputOutputArray image, OutputArrayOfArrays contours,OutputArray hierarchy, int mode,int method, Point offset=Point());参数列表中有个数据结构参数:hierarchy(译层次结构),hierarchy是一个向量,其元素个数与查找到的轮廓总数相同,每一个…...

Git(6)——GitHub
目录 一、简介 二、概要 三、注册 四、创建仓库 五、推送本地代码 六、拉取远端代码 一、简介 在Git(5)中,我们已经对Git分支的概念和用法有了一定了解,对于在本地进行代码版本管理,其实当前所学的东西基本已经…...

【RocketMQ专题】快速实战及集群架构原理详解
目录 课程内容一、MQ简介基本介绍*作用(解决什么问题) 二、RocketMQ产品特点2.1 RocketMQ介绍2.2 RocketMQ特点2.3 RocketMQ的运行架构 三、RocketMQ快速实战3.1 快速搭建RocketMQ服务3.2 快速实现消息收发3.3 搭建Maven客户端项目3.4 搭建RocketMQ可视化…...

[设计模式] 浅谈SOLID设计原则
目录 单一职责原则开闭原则里氏替换原则接口隔离原则依赖倒转原则 SOLID是一个缩写词,代表以下五种设计原则 单一职责原则 Single Responsibility Principle, SRP开闭原则 Open-Closed Principle, OCP里氏替换原则 Liskov Substitution Principle, LSP接口隔离原则 …...

基于Java+SpringBoot+Vue的旧物置换网站设计和实现
基于JavaSpringBootVue的旧物置换网站设计和实现 源码传送入口前言主要技术系统设计功能截图数据库设计代码论文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码传送入口 前言 摘 要 随着时代在一步一步在进步,旧物也成人们的烦恼,…...
Java基本语法2
目录 Java基本语法 第一个Java程序 基本语法 Java标识符 Java修饰符 Java变量 Java数组 Java枚举 Java关键字 Java注释 Java 空行 继承 接口 Java基本语法 一个Java程序可以认为是一系列对象的集合,而这些对象通过调用彼此的方法来协同工作。下面简要介…...

【数据结构】树的存储结构;树的遍历;哈夫曼树;并查集
欢~迎~光~临~^_^ 目录 1、树的存储结构 1.1双亲表示法 1.2孩子表示法 1.3孩子兄弟表示法 2、树与二叉树的转换 3、树和森林的遍历 3.1树的遍历 3.1.1先根遍历 3.1.2后根遍历 3.2森林的遍历 3.2.1先序遍历森林 3.2.2中序遍历森林 4、树与二叉树的应用 4.1哈夫曼树…...

CSS选择器练习小游戏
请结合CSS选择器练习小游戏进行阅读(网页的动态效果是没有办法通过静态图片展示的) 网址:请点击 有些题有多种答案,本文就不一一列出了 第一题 答案:plate第二题 答案:bento第三题 答案:#fa…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...