全球变暖问题(floodfill 处理联通块问题)
全球变暖问题
文章目录
- 全球变暖问题
- 前言
- 题目描述
- 题目分析
- 边界问题的考虑
- 岛屿是否被淹没判断:
- 如何寻找联通块:
- 代码
- 预告
前言
之前我们介绍了 bfs算法在二维,三维地图中的应用,现在我们接续进行拓展,解锁floodfill 算法,准确的来说是用 bfs算法解决联通块问题。后续还会更新 bfs算法有关内容,喜欢的小伙伴可以点个关注啦。
题目描述
你有一张某海域 N×N 像素的照片,”.”表示海洋、”#”表示陆地,如下所示:
.......
.##....
.##....
....##.
..####.
...###.
.......
其中”上下左右”四个方向上连在一起的一片陆地组成一座岛屿,例如上图就有 2 座岛屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围被海水淹没。
具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:
.......
.......
.......
.......
....#..
.......
.......
请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
输入格式
第一行包含一个整数N。
以下 N 行 N 列,包含一个由字符”#”和”.”构成的 N×N 字符矩阵,代表一张海域照片,”#”表示陆地,”.”表示海洋。
照片保证第 1 行、第 1 列、第 N 行、第 N 列的像素都是海洋。
输出格式
一个整数表示答案。
数据范围
1≤N≤1000
输入样例1:
7
.......
.##....
.##....
....##.
..####.
...###.
.......
输出样例1:
1
输入样例2:
9
.........
.##.##...
.#####...
.##.##...
.........
.##.#....
.#.###...
.#..#....
.........
输出样例2:
1
题目分析
边界问题的考虑
照片保证第 1 行、第 1 列、第 N 行、第 N 列的像素都是海洋。
这里想要不考虑边界问题,输入的初始下标要设为 1 开始,这样就可以保证数组不越界,并且由题目的意思可得,外围的圈都是海洋,只要下标从1 开始,我们就可以不用考虑bfs算法当中的边界问题。
岛屿是否被淹没判断:
如何判定这是一个不会被淹没的岛屿呢?
首先我们要明白联通块的概念------连在一起的快;
接着我们定义一个沿岸元素
具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
也就是说只要一个‘#’旁边有海洋,我们就可以认定该陆地元素‘#’是沿岸元素块。
只要我们的联通块的所有总数=沿岸元素的所有总数,那么我们就可以判定这是个会被淹没的岛屿
如何寻找联通块:
答案就是利用我们的 bfs算法将目标元素进行宽度优先搜索,将搜索到的的‘#’,标记,继续搜索那些没有被标记的‘#’。
代码
详细的解释都在代码的注释里头啦
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int N =1e3 + 7;
char g[N][N];//用来存放地图
bool st[N][N];//用来统计那些点已经被搜索过了
int dx[4]={-1,0,1,0};
int dy[4]={0,1,0,-1};
typedef pair<int,int> PII;
void bfs(int i,int j,int &total,int &bound){
//这里使用的引用符号是&,要将值传回去。st[i][j]=true;queue<PII> q;q.push({i,j});while(!q.empty()){auto t=q.front();q.pop();total++;bool flag=false;//这个flag用于沿岸元素的判断for(int i=0;i<4;i++){int x=t.first+dx[i];int y=t.second+dy[i];if(g[x][y]=='#' && !st[x][y]){q.push({x,y});st[x][y]=true;}if(g[x][y]=='.'){//只要有一个旁边元素是‘.’就可以判断其为沿岸元素flag=true;}}if(flag) bound++;//如果判断成功,沿岸元素++}
}
int main(){int n;cin>>n;memset(g,'.',sizeof g);//在题目分析中的说明里,//这个代码可要可不要,假如没有题目中的话,我们就要加上这行代码了for(int i=1;i<=n;i++) cin>>g[i];int res=0;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){if(!st[i][j] && g[i][j]=='#'){int total=0,bound=0;bfs(i,j,total,bound);if(total==bound) res++;//判断这个岛屿是否会被淹没}}}cout<<res<<endl;return 0;
}
预告
后期还放出大学生 web大作业【制作一个门户网站】,感兴趣的小伙伴可以点个关注啦
相关文章:
全球变暖问题(floodfill 处理联通块问题)
全球变暖问题 文章目录 全球变暖问题前言题目描述题目分析边界问题的考虑岛屿是否被淹没判断:如何寻找联通块: 代码预告 前言 之前我们介绍了 bfs算法在二维,三维地图中的应用,现在我们接续进行拓展,解锁floodfill 算…...
由于找不到vcruntime140_1.dll怎么修复,详细修复步骤分享
在使用电脑过程中,可能会遇到一些错误提示,其中之一是找不到vcruntime140_1.dll的问题。这使得许多用户感到困扰,不知道该如何解决这个问题。小编将详细介绍vcruntime140_1.dll的作用以及解决找不到该文件的方法,帮助你摆脱困境。…...
算法 三数之和-(双指针)
牛客网: BM54 题目: 数组中所有不重复的满足三数之和等于0的数,非递减形式。 思路: 数组不小于3。不重复非递减,需先排序。使用idx从0开始遍历到n-2, 如果出现num[idx]num[idx-1]的情况,忽略继续下一个idx;令left idx1, right …...
AB实验总结
互联网有线上系统,可做严格的AB实验。传统行业很多是不能做AB实验的。 匹配侧是采用严格的AB实验来进行模型迭代,而精细化定价是不能通过AB实验来评估模型好坏,经历过合成控制法、双重差分法,目前采用双重差分法来进行效果评估。…...
sklearn包中对于分类问题,如何计算accuracy和roc_auc_score?
1. 基础条件 import numpy as np from sklearn import metricsy_true np.array([1, 7, 4, 6, 3]) y_prediction np.array([3, 7, 4, 6, 3])2. accuracy_score计算 acc metrics.accuracy_score(y_true, y_prediction)这个没问题 3. roc_auc_score计算 The binary and mul…...
python温度转换程序
1.使用pycharm运行温度转换程序,尝试将温度单位设在前面 2.参照温度转换程序,自己写一个关于货币转换、长度转换、重量转换或者面积转换的程序 循环函数 def convertemperature():temperature ""while (temperature ! "q"):temperature in…...
Vue2中10种组件通信方式和实践技巧
目录 1,props / $emit1.1,一个需求方法1方法2 1.2,v-model 和 .syncv-model.sync 2,$children / $parent3,ref4,$attrs / $listeners$attrs$listenersinheritAttrs1.1 的问题的第3种解决方法 5,…...
Flutter flutter.minSdkVersion的实际文件位置
Flutter 项目的Android相关版本号配置: flutter.minSdkVersion 的版本号配置文件实际路径: …/flutter_sdk/packages/flutter_tools/gradle/src/main/groovy/flutter.groovy Flutter版本号如下: bzbMacBook-Pro ccsmec % flutter --version …...
python生成PDF报告
前言 最近接到了一个需求-将项目下的样本信息汇总并以PDF的形式展示出来,第一次接到这种PDF的操作的功能,还是有点慌的,还好找到了reportlab这个包,可以定制化向PDF写内容! 让我们由简入深进行讲解 一、reportlab是…...
在visual studio里安装Python并创建python工程
在2009年,云计算开始发力,Python、R、Go这些天然处理批量计算的语言也迅猛发展。微软在2010年,把Python当成一个语言包插件,集成到了visual studio 2010里。在"云优先,移动优先"的战略下,于2015年…...
AIGC(生成式AI)试用 6 -- 从简单到复杂
从简单到复杂,这样的一个用例该如何设计? 之前浅尝试用,每次尝试也都是由浅至深、由简单到复杂。 一点点的“喂”给生成式AI主题,以测试和验证生成式AI的反馈。 AIGC(生成式AI)试用 1 -- 基本文本_Role…...
竞赛 基于深度学习的人脸识别系统
前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/…...
uniapp:APP开发,后台保活
前言: 在ios中,软件切换至后台、手机息屏,过了十来秒软件就会被系统挂起,APP内的任务就不能继续执行;在android中,默认情况下,软件在后台运行的时候,触发某些特定条件的情况下&…...
vue2 项目中嵌入视频
案例: 代码: <template><div class"schematicDiagramIndex"><el-container><el-aside width"20rem"> <!-- <h4 style"font-size: 18px">视频演示</h4>--><div styl…...
第二章 进程与线程 十二、进程同步与进程互斥
目录 一、进程同步 1、定义 二、进程互斥 1、定义 2、四个部分 3、原则 一、进程同步 1、定义 进程同步是指在多个进程之间协调执行顺序的一种机制,使得进程按照一定的顺序执行,以避免出现不一致的情况。常见的实现方式有信号量、管程、屏障等。…...
Linux内核链表(list)移植到任意平台
一、前言 linux内核链表在include/linux/list.h文件中,内核中实现的链表比较简洁,实用性很强,因此想把它单独移植出来使用。 内核中的代码只能使用gnuc编译器编译,stdc编译器编译是会报错的,主要是因为typeof这个宏是…...
【操作系统】聊聊什么是CPU上下文切换
对于linux来说,本身就是一个多任务运行的操作系统,运行远大于CPU核心数的程序,从用户视角来看是并发执行,而在CPU视角看其实是将不同的CPU时间片进行分割,每个程序执行一下,就切换到别的程序执行。那么这个…...
CMake教程-第 2 步 添加一个库
CMake教程-第 2 步 添加一个库 1 CMake教程介绍2 学习步骤Step 1: A Basic Starting PointStep 2: Adding a LibraryStep 3: Adding Usage Requirements for a LibraryStep 4: Adding Generator ExpressionsStep 5: Installing and TestingStep 6: Adding Support for a Testin…...
DS 顺序表--类实现(C++数据结构题)
实现顺序表的用 C 语言和类实现顺序表 属性包括:数组、实际长度、最大长度(设定为 1000 ) 操作包括:创建、插入、删除、查找 类定义参考 #include<iostream> using namespace std; #define ok 0 #define error -1 // 顺…...
0.UML
1.图 1.1类图含义 第一层显示类的名称,如果是抽象类,则就用斜体显示。第二层是类的特性,通常就是字段和属性。第三层是类的操作,通常是方法或行为。注意前面的符号, ,表示public,-,表示private,#,表示protected。 1.2接口图 与类图的区别主要是顶端有<< interface >…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
