当前位置: 首页 > news >正文

代码随想录算法训练营Day56 | 动态规划(16/17) LeetCode 583. 两个字符串的删除操作 72. 编辑距离

动态规划马上来到尾声了,当时还觉得动态规划内容很多,但是也这么过来了。

第一题

583. Delete Operation for Two Strings

Given two strings word1 and word2, return the minimum number of steps required to make word1 and word2 the same.

In one step, you can delete exactly one character in either string.

本题和LC 115 相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的

class Solution:def minDistance(self, word1: str, word2: str) -> int:dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]for i in range(len(word1)+1):dp[i][0] = ifor j in range(len(word2)+1):dp[0][j] = jfor i in range(1, len(word1)+1):for j in range(1, len(word2)+1):if word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]else:dp[i][j] = min(dp[i-1][j-1] + 2, dp[i-1][j] + 1, dp[i][j-1] + 1)return dp[-1][-1]

第二题

72. Edit Distance

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。利用动态规划五部曲来做一个分析:

1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

2. 确定递推公式

整体来讲,有如下几种操作:

if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换
  1. if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];
  2. if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

    1. 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。即 dp[i][j] = dp[i - 1][j] + 1;
    2. 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。即 dp[i][j] = dp[i][j - 1] + 1;
    3. 操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

3. dp数组如何初始化

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

4. 确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的。

5. 举例推导dp数组

class Solution:def minDistance(self, word1: str, word2: str) -> int:dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]for i in range(len(word1)+1):dp[i][0] = ifor j in range(len(word2)+1):dp[0][j] = jfor i in range(1, len(word1)+1):for j in range(1, len(word2)+1):if word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]else:dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1return dp[-1][-1]

相关文章:

代码随想录算法训练营Day56 | 动态规划(16/17) LeetCode 583. 两个字符串的删除操作 72. 编辑距离

动态规划马上来到尾声了,当时还觉得动态规划内容很多,但是也这么过来了。 第一题 583. Delete Operation for Two Strings Given two strings word1 and word2, return the minimum number of steps required to make word1 and word2 the same. In on…...

HTML+CSS+JavaScript 大学生网页设计制作作业实例代码 200套静态响应式前端网页模板(全网最全,建议收藏)

目录 1.介绍2.这样的响应式页面这里有200套不同风格的 1.介绍 资源链接 📚web前端期末大作业 (200套) 集合 Web前端期末大作业通常是一个综合性的项目,旨在检验学生在HTML、CSS和JavaScript等前端技术方面的能力和理解。以下是一些可能的Web前端期末大…...

CFimagehost私人图床本地部署结合cpolar内网穿透实现公网访问

文章目录 1.前言2. CFImagehost网站搭建2.1 CFImagehost下载和安装2.2 CFImagehost网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar临时数据隧道3.2 Cpolar稳定隧道(云端设置)3.3.Cpolar稳定隧道(本地设置) 4.公网访问测…...

uniapp瀑布流布局写法

首先我们要清楚瀑布流是什么? 瀑布流布局(Waterfall Flow Layout),也称为瀑布流式布局,是一种常见的网页或移动应用布局方式,特点是元素以不规则的方式排列,就像瀑布中的流水一样,每…...

蓝桥杯 题库 简单 每日十题 day8

01 扫雷 题目描述 在一个n行列的方格图上有一些位置有地雷,另外一些位置为空。 请为每个空位置标一个整数,表示周围八个相邻的方格中有多少个地雷。 输入描述 输入的第一行包含两个整数n,m。 第2行到第n1行每行包含m个整数,相邻整…...

Keepalived 高可用(附带配置实例,联动Nginx和LVS)

Keepalived 一、Keepalived相关知识点概述1.1 单服务的风险(单点故障问题)1.2 一个合格的集群应该具备的特性1.3 VRRP虚拟路由冗余协议1.4 健康检查1.5 ”脑裂“现象 二、Keepalived2.1 Keepalived是什么?2.2 Keepalived体系主要模块及其作用…...

第二证券:今年来港股回购金额超700亿港元 9月近200家公司获增持

本年以来,港股上市公司回购力度不断增强。据恒生指数公司计算,到9月15日,本年以来港股回购金额到达735亿港元,占去年全年总额的70%。该公司预测,2023年港股回购金额可能到达929亿港元,是前5年年度平均水平的…...

Autosar基础——RTE简介

AutoSAR文章目录 AUTomotive Open System Architecture Autosar-简介和历史发展 Autosar-软件架构 Autosar软件组件-Application Layer介绍和SWC(Software Component)类型 Autosar-Runnables(可运行实体) Autosar-OS配置 Autosar IOC机制(核间通信) Autosar实践-CANTp Auto…...

几个国内可用的强大的GPT工具

前言: 人工智能发布至今,过去了九个多月,已经成为了我们不管是工作还是生活中一个重要的辅助工具,大大提升了效率,作为一个人工智能的自然语言处理工具,它给各大行业的提供了一个巨大的生产工具&#xff0c…...

《Python等级考试(1~6级)历届真题解析》专栏总目录

❤️ 专栏名称:《Python等级考试(1~6级)历届真题解析》 🌸 专栏介绍:中国电子学会《全国青少年软件编程等级考试》Python编程(1~6级)历届真题解析。 🚀 订阅专栏:订阅后可…...

在IntelliJ IDEA 中安装阿里P3C以及使用指南

在IntelliJ IDEA 中安装阿里P3C以及使用指南 1.关于阿里p3c1.1说明1.2什么是P3C插件1.3p3c的作用是什么 2 如何在IDEA中安装p3c2.1 插件安装2.2 插件使用 3.参考连接 1.关于阿里p3c 1.1说明 代码规范检查插件P3C,是根据《阿里巴巴java开发手册(黄山版)》转化而成的…...

Java集成支付宝沙箱支付,详细教程(SpringBoot完整版)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、开发前准备?二、使用步骤1、引入库2、配置在 application.yml 里面进行配置:3、alipay的java配置:AplipayConfig.java4、支付…...

详解Nacos和Eureka的区别

文章目录 Eureka是什么Nacos是什么Nacos的实现原理 Nacos和Eureka的区别CAP理论连接方式服务异常剔除操作实例方式自我保护机制 Eureka是什么 Eureka 是Spring Cloud 微服务框架默认的也是推荐的服务注册中心, 由Netflix公司与2012将其开源出来,Eureka基于REST服务开发,主要用…...

在Vue中实现组件间的通信(父子通信,非父子通信,通用通信)

在vue中实现组件间的通信 文章目录 在vue中实现组件间的通信1、组件通信1.1、不同的组件关系和组件通信方案分类1.2、组件通信的解决方案1.3、非父子通信- event bus事件总线 2、prop2.1、prop详解2.2、prop校验2.3、prop & data、单向数据流 3、v-mdoel原理 1、组件通信 …...

LLaMA参数微调方法

1.Adapter Tuning:嵌入在transformer中 新增了一个名为adapter的结构,其核心思想是保持模型其他原始参数不变,只改变adapter的参数,其结构如下图所示: 1.在每一个transformer模块最后都加入一层adapter。 2.adapter首…...

NSSCTF之Misc篇刷题记录(17)

NSSCTF之Misc篇刷题记录(17) [闽盾杯 2021]DNS协议分析[GFCTF 2021]pikapikapika NSSCTF平台:https://www.nssctf.cn/ PS:所有FLAG改为NSSCTF [闽盾杯 2021]DNS协议分析 数据包提示给得是DNS数据包 直接过滤一下 发现 数据里面存…...

红与黑(bfs + dfs 解法)(算法图论基础入门)

红与黑问题 文章目录 红与黑问题前言问题描述bfs 解法dfs 解法 前言 献给阿尔吉侬的花束( 入门级bfs查找 模版解读 错误示范 在之前的博客当中,详细地介绍了这类题目的解法,今天为大家带来一道类似的题目练练手,后续还会更新更有挑战的题目…...

为何学linux及用处

目前企业使用的操作系统无非就是国产类的,windows和linux类。我们要提升自己的技能,需要学习这两款。我记得在大学时期,学习过windows以及linux,但当时觉得又不常用,就学的模棱两可。毕业之后,你会发现&…...

ChatGPT高级数据分析功能

目录 只需上传数据集,系统即可自动进行分析。我们首先进行了一次测试。准备了一份关于二手车的数据,其格式如下: 接下来调用,GPT中的高级数据分析功能,上传数据,并要求进行分析 第一步:自动对数据字段进行详细的解释: 第二步,对数据进行预处理,比如缺失值,基本的…...

共享WiFi贴项目怎么实施与运营,微火为你提供高效解答!

共享WiFi贴是一项有前景的商业项目,不仅可以满足用户对网络的需求,还可以为创业者带来盈利的机会。那么,我们来看看如何有效地开展共享WiFi贴项目。 最重要的是选择合适的位置。共享WiFi贴项目的成功与否很大程度上取决于位置选择。优先选择人…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

基于 TAPD 进行项目管理

起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​:Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...