YOLOv5、YOLOv8改进:Decoupled Head解耦头
目录
1.Decoupled Head介绍
2.Yolov5加入Decoupled_Detect
2.1 DecoupledHead加入common.py中:
2.2 Decoupled_Detect加入yolo.py中:
2.3修改yolov5s_decoupled.yaml
1.Decoupled Head介绍
Decoupled Head是一种图像分割任务中常用的网络结构,用于提取图像特征并预测每个像素的类别。传统的图像分割网络通常将特征提取和像素预测过程集成在同一个网络中,而Decoupled Head则将这两个过程进行解耦,分别处理。
Decoupled Head的核心思想是通过引入额外的分支网络来进行像素级的预测。这个分支网络通常被称为“头”(head),因此得名Decoupled Head。具体而言,Decoupled Head网络在主干网络的特征图上添加一个或多个额外的分支,用于预测像素的类别。
Decoupled Head的优势在于可以更好地处理不同尺度和精细度的语义信息。通过将像素级的预测与特征提取分开,可以更好地利用底层和高层特征之间的语义信息,从而提高分割的准确性和细节保留能力。
Decoupled Head的优点:
-
分离特征提取和像素预测:Decoupled Head将特征提取和像素级预测分离开来,使得网络可以更加灵活地处理不同尺度和语义信息。
-
多尺度特征融合:通过在主干网络的不同层级添加分支,Decoupled Head可以融合来自不同尺度的特征信息,从而提高对多尺度目标的分割能力。
-
更好的像素级预测:由于Decoupled Head将像素级的预测作为独立的任务进行处理,可以更好地保留细节和边缘信息,提高分割的精确性。
-
可扩展性:Decoupled Head结构可以根据需要进行扩展和修改,例如添加更多的分支或调整分支的结构,以适应不同的任务和数据集需求。
YOLOv6 采用了解耦检测头(Decoupled Head)结构,同时综合考虑到相关算子表征能力和硬件上计算开销这两者的平衡,采用 Hybrid Channels 策略重新设计了一个更高效的解耦头结构,在维持精度的同时降低了延时,缓解了解耦头中 3x3 卷积带来的额外延时开销。
原始 YOLOv5 的检测头是通过分类和回归分支融合共享的方式来实现的,因此加入 Decoupled Head。
为什么要用到解耦头?
因为分类和定位的关注点不同;
分类更关注目标的纹理内容;
定位更关注目标的边缘信息

2.Yolov5加入Decoupled_Detect
2.1 DecoupledHead加入common.py中:
#======================= 解耦头=============================#
class DecoupledHead(nn.Module):def __init__(self, ch=256, nc=80, anchors=()):super().__init__()self.nc = nc # number of classesself.nl = len(anchors) # number of detection layersself.na = len(anchors[0]) // 2 # number of anchorsself.merge = Conv(ch, 256 , 1, 1)self.cls_convs1 = Conv(256 , 256 , 3, 1, 1)self.cls_convs2 = Conv(256 , 256 , 3, 1, 1)self.reg_convs1 = Conv(256 , 256 , 3, 1, 1)self.reg_convs2 = Conv(256 , 256 , 3, 1, 1)self.cls_preds = nn.Conv2d(256 , self.nc * self.na, 1) # 一个1x1的卷积,把通道数变成类别数,比如coco 80类(主要对目标框的类别,预测分数)self.reg_preds = nn.Conv2d(256 , 4 * self.na, 1) # 一个1x1的卷积,把通道数变成4通道,因为位置是xywhself.obj_preds = nn.Conv2d(256 , 1 * self.na, 1) # 一个1x1的卷积,把通道数变成1通道,通过一个值即可判断有无目标(置信度)def forward(self, x):x = self.merge(x)x1 = self.cls_convs1(x)x1 = self.cls_convs2(x1)x1 = self.cls_preds(x1)x2 = self.reg_convs1(x)x2 = self.reg_convs2(x2)x21 = self.reg_preds(x2)x22 = self.obj_preds(x2)out = torch.cat([x21, x22, x1], 1) # 把分类和回归结果按channel维度,即dim=1拼接return outclass Decoupled_Detect(nn.Module):stride = None # strides computed during buildonnx_dynamic = False # ONNX export parameterexport = False # export modedef __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layersuper().__init__()self.nc = nc # number of classesself.no = nc + 5 # number of outputs per anchorself.nl = len(anchors) # number of detection layersself.na = len(anchors[0]) // 2 # number of anchorsself.grid = [torch.zeros(1)] * self.nl # init gridself.anchor_grid = [torch.zeros(1)] * self.nl # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)self.m = nn.ModuleList(DecoupledHead(x, nc, anchors) for x in ch)self.inplace = inplace # use in-place ops (e.g. slice assignment)def forward(self, x):z = [] # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i]) # convbs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training: # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # whelse: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0xy = (xy * 2 + self.grid[i]) * self.stride[i] # xywh = (wh * 2) ** 2 * self.anchor_grid[i] # why = torch.cat((xy, wh, conf), 4)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].devicet = self.anchors[i].dtypeshape = 1, self.na, ny, nx, 2 # grid shapey, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid(y, x, indexing='ij')else:yv, xv = torch.meshgrid(y, x)grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)return grid, anchor_grid
2.2 Decoupled_Detect加入yolo.py中:
class BaseModel(nn.Module):
def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1] # Detect()if isinstance(m, (Detect, Segment,Decoupled_Detect)):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return self
class DetectionModel(BaseModel):
def _initialize_dh_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1] # Detect() modulefor mi, s in zip(m.m, m.stride): # from# reg_bias = mi.reg_preds.bias.view(m.na, -1).detach()# reg_bias += math.log(8 / (640 / s) ** 2)# mi.reg_preds.bias = torch.nn.Parameter(reg_bias.view(-1), requires_grad=True)# cls_bias = mi.cls_preds.bias.view(m.na, -1).detach()# cls_bias += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls# mi.cls_preds.bias = torch.nn.Parameter(cls_bias.view(-1), requires_grad=True)b = mi.b3.bias.view(m.na, -1)b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)mi.b3.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)b = mi.c3.bias.datab += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # clsmi.c3.bias = torch.nn.Parameter(b, requires_grad=True)
if isinstance(m, (Detect, Segment,ASFF_Detect)):s = 256 # 2x min stridem.inplace = self.inplaceforward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forwardcheck_anchor_order(m)m.anchors /= m.stride.view(-1, 1, 1)self.stride = m.strideself._initialize_biases() # only run onceelif isinstance(m, Decoupled_Detect):s = 256 # 2x min stridem.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forwardcheck_anchor_order(m) # must be in pixel-space (not grid-space)m.anchors /= m.stride.view(-1, 1, 1)self.stride = m.strideself._initialize_dh_biases() # only run once
def parse_model(d, ch): # model_dict, input_channels(3)
elif m in {Detect, Segment,Decoupled_Detect}:args.append([ch[x] for x in f])if isinstance(args[1], int): # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)
2.3修改yolov5s_decoupled.yaml
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 1 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:- [10,13, 16,30, 33,23] # P3/8- [30,61, 62,45, 59,119] # P4/16- [116,90, 156,198, 373,326] # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2[-1, 1, Conv, [128, 3, 2]], # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]], # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]], # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]], # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]], # cat backbone P4[-1, 3, C3, [512, False]], # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]], # cat backbone P3[-1, 3, C3, [256, False]], # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], # cat head P4[-1, 3, C3, [512, False]], # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], # cat head P5[-1, 3, C3, [1024, False]], # 23 (P5/32-large)[[17, 20, 23], 1, Decoupled_Detect, [nc, anchors]], # Detect(P3, P4, P5),解耦]
相关文章:
YOLOv5、YOLOv8改进:Decoupled Head解耦头
目录 1.Decoupled Head介绍 2.Yolov5加入Decoupled_Detect 2.1 DecoupledHead加入common.py中: 2.2 Decoupled_Detect加入yolo.py中: 2.3修改yolov5s_decoupled.yaml 1.Decoupled Head介绍 Decoupled Head是一种图像分割任务中常用的网络结构&#…...
Prometheus+Grafana可视化监控【Redis状态】
文章目录 一、安装Docker二、安装Redis数据库(Docker容器方式)三、安装Prometheus四、安装Grafana五、Pronetheus和Grafana相关联六、安装redis_exporter七、Grafana添加Redis监控模板 一、安装Docker 注意:我这里使用之前写好脚本进行安装Docker,如果已…...
怒刷LeetCode的第6天(Java版)
目录 第一题 题目来源 题目内容 解决方法 方法一:哈希表 方法二:逐个判断字符 方法三:模拟减法 第二题 题目来源 题目内容 解决方法 方法一:水平扫描法 方法二:垂直扫描法 方法三:分治法 方…...
SSL双向认证-Nginx配置
SSL双向认证需要CA证书,开发过程可以利用自签CA证书进行调试验证。 自签CA证书生成过程:SSL双向认证-自签CA证书生成 Nginx配置适用于前端项目或前后端都通过Nginx转发的时候(此时可不配置后端启用双向认证) 1.Nginx配置&#…...
GO学习之 远程过程调用(RPC)
GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、GO学习之 网络通信(Net/Htt…...
八大排序(四)--------直接插入排序
本专栏内容为:八大排序汇总 通过本专栏的深入学习,你可以了解并掌握八大排序以及相关的排序算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:八大排序汇总 🚚代码仓库:小小unicorn的代码仓库…...
MYSQL--存储引擎和日志管理
存储引擎: 一、存储引擎概念: MySQL中的数据用各种不同的技术存储在文件中,每一种技术都使用不同的存储机制、索引技巧、锁定水平并最终提供不同的功能和能力,这些不同的技术以及配套的功能在MySQL中称为存储引擎。存储引擎是My…...
VUE之更换背景颜色
1. 确定需求 在实现之前,首先需要明确需求,即用户可以通过某种方式更改页面背景颜色,所以我们需要提供一个可操作的控件来实现此功能。 2. 创建Vue组件 为了实现页面背景颜色更换功能,我们可以创建一个Vue组件。下面是一个简单…...
大型集团借力泛微搭建语言汇率时区统一、业务协同的国际化OA系统
国际化、全球化集团,业务遍布全世界,下属公司众多,集团对管理方式和企业文化塑造有着很高的要求。不少大型集团以数字化方式助力全球统一办公,深化企业统一管理。 面对大型集团全球化的管理诉求,数字化办公系统作为集…...
Quartz 建表语句SQL文件
SQL文件在jar里面,github下载 https://github.com/quartz-scheduler/quartz/releases/tag/v2.3.2 解压,sql文件路径:quartz-core\src\main\resources\org\quartz\impl\jdbcjobstore tables_mysql_innodb.sql # # In your Quartz propertie…...
nginx SseEmitter 长连接
1、问题还原: 在做openai机器人时,后台使用 SseEmitterEventSource 实现流式获取数据,前端通过 EventSourcePolyfill 函数接收后端的数据,在页面流式输出到页面,做成逐字打稿的效果。本地测试后,可以正常获…...
若依cloud -【 100 ~ 】
100 分布式日志介绍 | RuoYi 分布式日志就相当于把日志存储在不同的设备上面。比如若依项目中有ruoyi-modules-file、ruoyi-modules-gen、ruoyi-modules-job、ruoyi-modules-system四个应用,每个应用都部署在单独的一台机器里边,应用对应的日志的也单独存…...
VPN协议是如何工作的
VPN,全名 Virtual Private Network,虚拟专用网,就是利用开放的公众网络,建立专用数据传输通道,将远程的分支机构、移动办公人员等连接起来。 VPN 通过隧道技术在公众网络上仿真一条点到点的专线,是通过利用…...
c++::作用域符解析
1)当存在具有相同名称的局部变量时,要访问全局变量 2)在类之外定义函数。 class A { } void A::func(){ }A a;a.func();3)访问一个类的静态变量 class A { static int b; } A::b; 4) 如果两个命名空间中都存在一个具有相同名称的类…...
【电源专题】什么是充电芯片的Shipping Mode(船运模式)
现在越来越多电子产品小型化,手持化,这样就需要电池来为产品供电。但电池供电造成的另一个难题就是产品的续航能力的强与弱。 如果想提升续航能力,有一种方法是提高电池容量。如果电池体积没有变化的情况下,可能使用了新型材料、高级技术来增加电池容量,但这势必会增加电池…...
WebGL笔记: 2D和WebGL坐标系对比和不同的画图方式, 程序对象通信,顶点着色器,片元着色器
WebGL 坐标系 canvas2d画布和webgl画布使用的坐标系都是二维直角坐标系,但它们坐标原点、y 轴的坐标方向,坐标基底都不一样canvas2d 坐标系的原点在左上角, x轴朝右,y轴朝下1个单位的宽就是一个像素的宽,1个单位的高就是一个像素…...
【php经典算法】冒泡排序,冒泡排序原理,冒泡排序执行逻辑,执行过程,执行结果 代码
冒泡排序原理 每次比较两个相邻的元素,将较大的元素交换至右端 冒泡排序执行过程输出效果 冒泡排序实现思路 每次冒泡排序操作都会将相邻的两个元素进行比较,看是否满足大小关系要求,如果不满足,就交换这两个相邻元素的次序&…...
多模块和分布式项目
一、什么是多模块项目 多模块项目是一种软件项目组织结构,其中一个大型项目被分成多个独立的子模块或子项目。每个子模块通常具有自己的功能、目录结构和开发周期,但它们可以协同工作以构建一个完整的应用程序。这种项目结构有助于提高代码的可维护性、…...
AI视频剪辑:批量智剪技巧大揭秘
对于许多内容创作者来说,视频剪辑是一项必不可少的技能。然而,传统的视频剪辑方法需要耗费大量的时间和精力。如今,有一种全新的剪辑方式正在改变这一现状,那就是批量AI智剪。这种智能化的剪辑方式能够让你在短时间内轻松剪辑大量…...
vue项目实现地址自动识别功能
1、安装第三方依赖 npm install address-parse 2、在需要使用的页面引入 import AddressParse from address-parse; 3、在页面上写入静态的html代码,可以输入地址,加上识别的输入框; <div class"auto_address"><van-…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...
GraphRAG优化新思路-开源的ROGRAG框架
目前的如微软开源的GraphRAG的工作流程都较为复杂,难以孤立地评估各个组件的贡献,传统的检索方法在处理复杂推理任务时可能不够有效,特别是在需要理解实体间关系或多跳知识的情况下。先说结论,看完后感觉这个框架性能上不会比Grap…...
