当前位置: 首页 > news >正文

使用 PyTorch 的计算机视觉简介 (1/6)

一、说明

Computer Vision(CV)是一个研究计算机如何从数字图像和/或视频中获得一定程度的理解的领域。理解这个定义具有相当广泛的含义 - 它可以从能够区分图片上的猫和狗,到更复杂的任务,例如用自然语言描述图像。

二、CV常见的问题

        计算机视觉最常见的问题包括:

  • 图像分类是最简单的任务,当我们需要将图像分类为许多预定义类别之一时,例如,区分照片上的猫和狗,或识别手写数字。
  • 目标检测是一项比较困难的任务,我们需要在图片上找到已知对象并对其进行定位,即返回每个识别对象的边界框。
  • 分割类似于对象检测,但我们需要返回一个精确的像素图,概述每个识别的对象,而不是给出边界框。

        我们将专注于图像分类任务,以及如何使用神经网络来解决它。与任何其他机器学习任务一样,要训练用于对图像进行分类的模型,我们需要一个标记的数据集,即每个类的大量图像。

三、图像作为张量

        计算机视觉适用于图像。您可能知道,图像由像素组成,因此可以将它们视为像素的矩形集合。

        在本单元的第一部分中,我们将处理手写数字识别。我们将使用 MNIST 数据集,该数据集由手写数字的灰度图像组成,28x28 像素。每个图像都可以表示为 28x28 数组,该数组的元素将表示相应像素的强度 - 在 0 到 1 范围内(在这种情况下使用浮点数),或者 0 到 255(整数)。一个名为numpy的流行python库通常用于计算机视觉任务,因为它允许有效地操作多维数组。

        为了处理彩色图像,我们需要一些方法来表示颜色。在大多数情况下,我们用 3 个强度值表示每个像素,对应于红色 (R)、绿色 (G) 和蓝色 (B) 分量。这种颜色编码称为RGB,因此大小为W×H的彩色图像将表示为大小
为3 × H × W的数组。

        使用多维数组来表示图像也有一个优势,因为我们可以使用额外的维度来存储图像序列。
例如,为了表示由 200 帧组成的视频片段,维度为 800 × 600,我们可以使用大小为 200 × 3 × 600 × 800 的张量。

        多维数组也称为张量。通常,当我们谈论一些神经网络框架时,我们指的是张量,例如 PyTorch。PyTorch 和 numpy 数组中的张量之间的主要区别在于,张量支持 GPU 上的并行操作(如果可用)。此外,PyTorch 在张量上操作时提供了额外的功能,例如自动微分。

四、导入包并加载 MNIST 数据集

!pip install -r https://raw.githubusercontent.com/MicrosoftDocs/pytorchfundamentals/main/computer-vision-pytorch/requirements.txt
#Import the packages needed.
import torch
import torchvision
import matplotlib.pyplot as plt
import numpy as np

        PyTorch有许多直接从库中可用的数据集。在这里,我们使用众所周知的手写数字MNIST数据集,可通过PyTorch中的torchvison.datasets.MNIST获得。数据集对象以 Python 想象库 (PIL) 图像的形式返回数据,我们通过传递 transform = ToTensor() 参数将其转换为张量。

        使用自己的笔记本时,您还可以尝试其他内置数据集,特别是FashionMNIST数据集

from torchvision.transforms import ToTensordata_train = torchvision.datasets.MNIST('./data',download=True,train=True,transform=ToTensor())
data_test = torchvision.datasets.MNIST('./data',download=True,train=False,transform=ToTensor())

五、可视化数据集

现在我们已经下载了数据集,我们可以可视化数字。

fig,ax = plt.subplots(1,7)
for i in range(7):ax[i].imshow(data_train[i][0].view(28,28))ax[i].set_title(data_train[i][1])ax[i].axis('off')

六、数据集结构

        我们总共有 6000 张训练图像和 1000 张测试图像。拆分数据以进行训练和测试非常重要。我们还想做一些数据探索,以更好地了解我们的数据是什么样子的。

每个样本都是以下结构的元组:

  • 第一个元素是一个数字的实际图像,由形状为 1 × 28 × 28 的张量表示
  • 第二个元素是一个标签,用于指定张量表示哪个数字。它是一个张量,包含从 0 到 9 的数字

data_train是一个训练数据集,我们将使用它来训练我们的模型。data_test是一个较小的测试数据集,我们可以用来验证我们的模型。

print('Training samples:',len(data_train))
print('Test samples:',len(data_test))print('Tensor size:',data_train[0][0].size())
print('First 10 digits are:', [data_train[i][1] for i in range(10)])
Training samples: 60000
Test samples: 10000
Tensor size: torch.Size([1, 28, 28])
First 10 digits are: [5, 0, 4, 1, 9, 2, 1, 3, 1, 4]

图像的所有像素强度都由介于 0 和 1 之间的浮点值表示:

print('Min intensity value: ',data_train[0][0].min().item())
print('Max intensity value: ',data_train[0][0].max().item())
Min intensity value:  0.0
Max intensity value:  1.0

祝你学习愉快!V笔记本

 

相关文章:

使用 PyTorch 的计算机视觉简介 (1/6)

一、说明 Computer Vision(CV)是一个研究计算机如何从数字图像和/或视频中获得一定程度的理解的领域。理解这个定义具有相当广泛的含义 - 它可以从能够区分图片上的猫和狗,到更复杂的任务,例如用自然语言描述图像。 二、CV常见的问…...

用PHP实现极验验证功能

极验验证是一种防机器人的验证机制,可以通过图像识别等方式来判断用户是否为真实用户。在实现极验验证功能时,您需要进行以下步骤: 1 注册极验账号: 首先,您需要在极验官网注册账号并创建一个应用,获取相应…...

【数据结构初阶】三、 线性表里的链表(无头+单向+非循环链表)

相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 【数据结构初阶】二、 线性表里的顺序表_高高的胖子的博客-CSDN博客 引言 通过上期对顺序表的介绍和使用 我们可以知道顺序表有以下优点和缺点: 顺序表优点 尾插 和 尾…...

Mybatis 映射器与XML配置职责分离

之前我们介绍了使用XML配置方式完成对数据的增删改查操作,使用此方式在实际调用时需要使用【命名空间.标签编号】的方式执行,此方式在编写SQL语句时很方便,而在执行SQL语句环节就显得不太优雅;另外我们也介绍了使用映射器完成对数…...

微服务引擎

微服务引擎,MSE_微服务引擎 MSE-阿里云帮助中心 一、什么是微服务引擎MSE 微服务引擎MSE(Microservices Engine)是一个面向业界主流开源微服务生态的一站式微服务平台,提供注册配置中心(原生支持Nacos/ZooKeeper/Eur…...

前端JavaScript入门到精通,javascript核心进阶ES6语法、API、js高级等基础知识和实战 —— JS基础(三)

允许一切发生&#xff0c;生活不过是见招拆招。 思维导图 一、循环-for 1.1 for 循环-基本使用 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEe…...

搭建部署属于自己的基于gpt3.5的大语言模型(基于flask+html+css+js+mysql实现)

一、简介 本项目是一个基于GPT-3.5模型的聊天机器人网站&#xff0c;旨在为用户提供一个简便、直接的方式来体验和利用GPT-3.5模型的强大功能。项目以Flask为基础&#xff0c;构建了一个完整的Web应用程序&#xff0c;其中包含了多个前端页面和后端API接口&#xff0c;能够处理…...

AI创作专家,免费的AI创作专家工具

AI创作专家是一种崭新的工具&#xff0c;它们利用先进的人工智能技术&#xff0c;帮助创作者和写手更轻松地应对创作挑战。这些工具不仅可以生成文字&#xff0c;还可以提供灵感、帮助构思和组织思路&#xff0c;使创作过程更加高效。 147GPT批量文章生成工具​www.147seo.com/…...

Nginx之gzip模块解读

目录 gzip基本介绍 gzip工作原理 Nginx中的gzip 不建议开启Nginx中的gzip场景 gzip基本介绍 gzip是GNUzip的缩写&#xff0c;最早用于UNIX系统的文件压缩。HTTP协议上的gzip编码是一种用来改进web应用程序性能的技术&#xff0c;web服务器和客户端&#xff08;浏览器&…...

微软在Windows 11推出Copilot,将DALL-E 3集成在Bing!

美东时间9月21日&#xff0c;微软在美国纽约曼哈顿举办产品发布会&#xff0c;生成式AI成为重要主题之一。 微软表示&#xff0c;Copilot将于9月26日在Windows 11中推出&#xff1b;Microsoft 365 Copilot 将于11 月1日向企业客户全面推出&#xff1b;将OpenAI最新的文本生成图…...

SLAM从入门到精通(消息传递)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们只是编写了一个publisher节点&#xff0c;以及一个subscribe节点。有了这两个节点&#xff0c;它们之间就可以通信了。在实际生产中&#…...

思科路由器:NAT的基础配置

一直以来&#xff0c;对于华为、H3C、锐捷交换机的命令配置&#xff0c;不断的有朋友留言&#xff0c;三家交换机的配置命令容易弄混&#xff0c;经常在实际项目配置中出错&#xff0c;因此&#xff0c;找几个基础的示例来练练。 R1配置 Router>en Router>enable Rout…...

动态代理。

无侵入式的给代码增加额外的功能 代理的作用&#xff1a;对象如果干的事情太繁琐&#xff0c;就可以通过代理来转移部分职责&#xff1b;也就是相当于把对象的的方法拆开一些步骤分给代理做&#xff0c;对象做关键的就行了&#xff1b;并且代理做的这些繁琐的事情的名字也要和…...

Learn Prompt-GPT-4:能力

GPT-4能力大赏​ 常识知识推理​ 一个猎人向南走了一英里&#xff0c;向东走了一英里&#xff0c;向北走了一英里&#xff0c;最后回到了起点。他看到了一只熊&#xff0c;于是开枪打了它。这只熊是什么颜色的&#xff1f; 答案是白色&#xff0c;因为这种情况只可能发生在北…...

iOS——ViewController的生命周期

ViewController ViewController的生命周期是指在应用程序运行过程中&#xff0c;ViewController实例从创建到销毁的整个过程。在这个过程中&#xff0c;ViewController会经历一系列的生命周期方法&#xff0c;这些方法可以帮助开发者管理ViewController及其相关的视图和逻辑。…...

SkyWalking内置参数与方法

参数 全局指标 指标指标名称all_p99所有服务响应时间的 p99 值all_p95所有服务响应时间的 p95 值all_p90所有服务响应时间的 p90 值all_p75所有服务响应时间的 p75 值all_p70所有服务响应时间的 p70 值all_heatmap所有服务响应时间的热点图 服务指标 指标指标名称service_r…...

【C++面向对象侯捷】12.虚函数与多态 | 13.委托相关设计【设计模式 经典做法,类与类之间关联起来,太妙了,不断的想,不断的写代码】

文章目录 12.虚函数与多态举例&#xff1a;委托 继承【观察者模式】13.委托相关设计Composite 组合模式Prototype 原型模式 12.虚函数与多态 纯虚函数 一定要 子类重新定义的 继承和复合 关系下的构造和析构 举例&#xff1a;委托 继承【观察者模式】 13.委托相关设计 问题…...

基于若依ruoyi-nbcio增加flowable流程待办消息的提醒,并提供右上角的红字数字提醒(五)

1、下面提供给前端待办提醒消息的接口SysNoticeController&#xff0c;增加如下&#xff1a; /*** 补充用户数据&#xff0c;并返回系统消息* return*/Log(title "系统消息")GetMapping("/listByUser")public R<Map<String, Object>> listByU…...

hive数据初始化

mysql版本&#xff1a;3.1.3 hive版本&#xff1a; 8.0.31 hive连接配置 <property> <name>javax.jdo.option.ConnectionURL</name> <value>jdbc:mysql://node88:3306/hive?createDatabaseIfNotExisttrue</value> </pr…...

React+Node——next.js 构建前后端项目

一、安装全局依赖 npm i -g create-next-app二、创建next项目 create-next-app react-next-demo //或 create-next-app react-next-demo --typescript三、加载mysql依赖 npm i -S mysql2四、运行项目 npm run dev五、创建db文件目录&#xff0c;目录下创建index.ts import…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...