《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN)
LeNet、AlexNet和VGG的设计模式都是先用卷积层与汇聚层提取特征,然后用全连接层对特征进行处理。
AlexNet和VGG对LeNet的改进主要在于扩大和加深这两个模块。网络中的网络(NiN)则是在每个像素的通道上分别使用多层感知机。
import torch
from torch import nn
from d2l import torch as d2l
7.3.1 NiN
NiN的想法是在每个像素位置应用一个全连接层。 如果我们将权重连接到每个空间位置,我们可以将其视为 1 × 1 1\times 1 1×1 卷积层,即是作为在每个像素位置上独立作用的全连接层。 从另一个角度看,是将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。
NiN块以一个普通卷积层开始,后面是两个 1 × 1 1\times 1 1×1 的卷积层。这两个卷积层充当带有ReLU激活函数的逐像素全连接层。
def nin_block(in_channels, out_channels, kernel_size, strides, padding):return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
7.3.2 NiN 模型
最初的 NiN 网络是在 AlexNet 后不久提出的,显然 NiN 网络是从 AlexNet 中得到了一些启示的。 NiN 使用窗口形状为 11 × 11 11\times 11 11×11 、 5 × 5 5\times 5 5×5 和 3 × 3 3\times 3 3×3 的卷积层,输出通道数量与 AlexNet 中的相同。每个NiN块后有一个最大汇聚层,汇聚窗口形状为 3 × 3 3\times 3 3×3 ,步幅为 2。
NiN 和 AlexNet 之间的显著区别是 NiN 使用一个 NiN 块取代了全连接层。其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层,生成一个对数几率。
NiN 设计的一个优点是显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

net = nn.Sequential(nin_block(1, 96, kernel_size=11, strides=4, padding=0),nn.MaxPool2d(3, stride=2),nin_block(96, 256, kernel_size=5, strides=1, padding=2),nn.MaxPool2d(3, stride=2),nin_block(256, 384, kernel_size=3, strides=1, padding=1),nn.MaxPool2d(3, stride=2),nn.Dropout(0.5),# 标签类别数是10nin_block(384, 10, kernel_size=3, strides=1, padding=1),nn.AdaptiveAvgPool2d((1, 1)),# 将四维的输出转成二维的输出,其形状为(批量大小,10)nn.Flatten())
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape: torch.Size([1, 96, 54, 54])
MaxPool2d output shape: torch.Size([1, 96, 26, 26])
Sequential output shape: torch.Size([1, 256, 26, 26])
MaxPool2d output shape: torch.Size([1, 256, 12, 12])
Sequential output shape: torch.Size([1, 384, 12, 12])
MaxPool2d output shape: torch.Size([1, 384, 5, 5])
Dropout output shape: torch.Size([1, 384, 5, 5])
Sequential output shape: torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape: torch.Size([1, 10, 1, 1])
Flatten output shape: torch.Size([1, 10])
7.3.3 训练模型
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) # 大约需要二十五分钟,慎跑
loss 0.600, train acc 0.769, test acc 0.775
447.9 examples/sec on cuda:0

练习
(1)调整 NiN 的超参数,以提高分类准确性。
net2 = nn.Sequential(nin_block(1, 96, kernel_size=11, strides=4, padding=0),nn.MaxPool2d(3, stride=2),nin_block(96, 256, kernel_size=5, strides=1, padding=2),nn.MaxPool2d(3, stride=2),nin_block(256, 384, kernel_size=3, strides=1, padding=1),nn.MaxPool2d(3, stride=2),nn.Dropout(0.5),nin_block(384, 10, kernel_size=3, strides=1, padding=1),nn.AdaptiveAvgPool2d((1, 1)),nn.Flatten())lr, num_epochs, batch_size = 0.15, 12, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net2, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) # 大约需要三十分钟,慎跑
loss 0.353, train acc 0.871, test acc 0.884
449.5 examples/sec on cuda:0

学习率调大一点点之后精度更高了,但是波动变的分外严重。
(2)为什么 NiN 块中有两个 1 × 1 1\times 1 1×1 的卷积层?删除其中一个,然后观察和分析实验现象。
def nin_block2(in_channels, out_channels, kernel_size, strides, padding):return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())net3 = nn.Sequential(nin_block2(1, 96, kernel_size=11, strides=4, padding=0),nn.MaxPool2d(3, stride=2),nin_block2(96, 256, kernel_size=5, strides=1, padding=2),nn.MaxPool2d(3, stride=2),nin_block2(256, 384, kernel_size=3, strides=1, padding=1),nn.MaxPool2d(3, stride=2),nn.Dropout(0.5),# 标签类别数是10nin_block2(384, 10, kernel_size=3, strides=1, padding=1),nn.AdaptiveAvgPool2d((1, 1)),# 将四维的输出转成二维的输出,其形状为(批量大小,10)nn.Flatten())lr, num_epochs, batch_size = 0.15, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net3, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) # 大约需要二十分钟,慎跑
loss 0.309, train acc 0.884, test acc 0.890
607.5 examples/sec on cuda:0

有时候会更好,有时候会不收敛。
(3)计算 NiN 的资源使用情况。
a. 参数的数量是多少?b. 计算量是多少?c. 训练期间需要多少显存?d. 预测期间需要多少显存?
a. 参数数量:
[ 11 × 11 + 2 ] + [ 5 × 5 + 2 ] + [ 3 × 3 + 2 ] + [ 3 × 3 + 2 ] = 123 + 27 + 11 + 11 = 172 \begin{align} &[11\times 11 + 2] + [5\times 5 + 2] + [3\times 3 + 2] + [3\times 3 + 2]\\ =& 123+27+11+11\\ =& 172 \end{align} ==[11×11+2]+[5×5+2]+[3×3+2]+[3×3+2]123+27+11+11172
b. 计算量:
{ [ ( 224 − 11 + 4 ) / 4 ] 2 × 1 1 2 × 96 + 22 4 2 × 2 } + [ ( 26 − 5 + 2 + 1 ) 2 × 5 2 × 96 × 256 + 2 6 2 × 2 ] + [ ( 12 − 3 + 1 + 1 ) 2 × 3 2 × 256 × 384 + 1 2 2 × 2 ] + [ ( 5 − 3 + 1 + 1 ) 2 × 3 2 × 384 × 10 + 5 2 × 2 ] = 34286966 + 353895752 + 107053344 + 553010 = 495789072 \begin{align} &\{[(224-11+4)/4]^2\times 11^2\times 96 + 224^2\times 2\} + [(26-5+2+1)^2\times 5^2\times 96\times 256 + 26^2\times 2] + \\ &[(12-3+1+1)^2\times 3^2\times 256\times 384 + 12^2\times 2]+[(5-3+1+1)^2\times 3^2\times 384\times 10 + 5^2\times 2]\\ =&34286966+353895752+107053344+553010\\ =&495789072 \end{align} =={[(224−11+4)/4]2×112×96+2242×2}+[(26−5+2+1)2×52×96×256+262×2]+[(12−3+1+1)2×32×256×384+122×2]+[(5−3+1+1)2×32×384×10+52×2]34286966+353895752+107053344+553010495789072
(4)一次性直接将 384 × 5 × 5 384\times 5\times 5 384×5×5 的表示压缩为 10 × 5 × 5 10\times 5\times 5 10×5×5 的表示,会存在哪些问题?
压缩太快可能导致特征损失过多。
相关文章:
《动手学深度学习 Pytorch版》 7.3 网络中的网络(NiN)
LeNet、AlexNet和VGG的设计模式都是先用卷积层与汇聚层提取特征,然后用全连接层对特征进行处理。 AlexNet和VGG对LeNet的改进主要在于扩大和加深这两个模块。网络中的网络(NiN)则是在每个像素的通道上分别使用多层感知机。 import torch fr…...
古代有没有电子元器件?
手机,电脑,电视等等电子产品,无时无刻充斥在我们的生活中,如果有一天突然没有了这些功能多样的电子产品,估计大部分人都会一时之间难以适应。 这就好比正在上网,结果突然被人断了网,导致无网络连…...
log4j2或者logback配置模版实现灵活输出服务名
介绍 在我们使用log4j2或者logback打印日志时,输出的内容中通常是一定要加上服务名的。以log4j2为例: <!--输出控制台的配置--> <Console name"Console" target"SYSTEM_OUT"><!-- 输出日志的格式 --><Patter…...
使用HTTP爬虫ip中的常见误区与解决方法
在如今的互联网时代,为了保障个人隐私和实现匿名浏览,许多人选择使用HTTP爬虫ip。然而,由于缺乏了解和使用经验,常常会出现一些误区。本文将为大家介绍使用HTTP爬虫ip过程中常见的误区,并提供相应的解决方法࿰…...
MySQL学习笔记3
MySQL的源码编译安装: 1、参考MySQL的源码安装官方文档: 2、源码安装定制选项: 3、源码安装三部曲:配置、编译、安装。 4、软件安装包: mysql-boost-5.7.43.tar.gz 5、安装需求: 安装需求具体配置安装目…...
快速掌握ES6
什么是ES6 ES6(ECMAScript 6),也被称为ES2015,是JavaScript的第六个版本,于2015年发布。ES6引入了许多新的语法和功能,旨在提高JavaScript的开发效率和代码质量。 ES6的一些主要特性和改进包括࿱…...
电池厂提供excel电池曲线zcv到mtk电池曲线zcv转换
#encoding:utf8 #电池厂提供excel电池曲线zcv到mtk电池曲线zcv转换 import pandas as pd import openpyxl import math # 读取Excel文件 df pd.read_excel("a55-zcv.xlsx") for j in range(0,10): if(j<3): offset0 #T0~T2 if(j3): offset…...
重写和重载、抽象类和接口
文章目录 前言一、重载与重写1.重载(Overload)(1)条件(2)举例 2.重写(Override)(1)规则(2)举例 3.重载和重写区别 二、抽象类与接口1.抽象类&…...
Untiy UDP局域网 异步发送图片
同步画面有问题,传图片吧 using System.Text; using System.Net.Sockets; using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.Events; using System.Net; using System; using System.Threading.Tasks; using Sy…...
移动端H5封装一个 ScrollList 横向滚动列表组件,实现向左滑动
效果: 1.封装组件: <template><div class"scroll-list"><divclass"scroll-list-content":style"{ background, color, fontSize: size }"ref"scrollListContent"><div class"scroll…...
Docker一键安装和基本配置
一键安装脚本 注:该脚本需要root权限 curl -sSL https://get.docker.com/ | sh非root组用户赋权 sudo groupadd docker # 若使用一键安装脚本会自动创建这个组,提示已存在 sudo gpasswd -a ${USER} docker # 将当前用户添加到docker组,也…...
MVC设计思想理解和ASP.NET MVC理解
三层模式 三层模式包括:UI层,业务逻辑层,数据访问层,模型层 MVC设计思想和ASP.NET MVC理解 MVC设计思想: MVC的思想就是把我们的程序分为三个核心的模块,这三个模块的详细介绍如下: 模型(Model) :负责封装与引用程序的业务逻辑相关的数据以及对数据的处理方法。模型层有对…...
大模型应用选择对比
大模型应用选择对比 1、知识库对比:dify、fastgpt、langchatchat 2、agent构建器选择:flowise、langflow、bisheng 3、召回率提升方案...
c++STL概述
目录 STL基本概念 STL六大组件 STL的优点 STL三大组件 容器 算法 迭代器 普通的迭代器访问vector容器元素 算法for_each实现循环 迭代器指向的元素类型是自定义数据类型 迭代器指向容器 常用容器 string容器 string的基本概念 string容器的操作 string的构造函…...
利用容器技术优化DevOps流程
利用容器技术优化DevOps流程 随着云计算的快速发展,容器技术也日益流行。容器技术可以打包和分发应用程序,并实现快速部署和扩展。在DevOps流程中,容器技术可以大大优化开发、测试、部署和运维各个环节。本文将介绍如何利用容器技术优化DevO…...
91 # 实现 express 的优化处理
上一节实现 express 的请求处理,这一节来进行实现 express 的优化处理 让 layer 提供 match 方法去匹配 pathname,方便拓展让 layer 提供 handle_request 方法,方便拓展利用第三方库 methods 批量生成方法性能优化问题 进行路由懒加载&#…...
arcgis拓扑检查实现多个矢量数据之间消除重叠区域
目录 环境介绍: 操作任务: 步骤: 1、数据库和文件结构准备 2、建立拓扑规则 3、一直下一页默认参数后,进行拓扑检查 4、打开TP_CK_Topology,会自动带出拓扑要素,红色区域为拓扑错误的地方࿱…...
基于Vue+ELement搭建登陆注册页面实现后端交互
🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《ELement》。🎯🎯 …...
JS获取经纬度, 并根据经纬度得到城市信息
在JavaScript中,获取经纬度通常需要使用定位服务,比如HTML5的Geolocation API。然而拿到坐标后,将经纬度转换为城市信息,则需要使用逆地理编码服务接口,比如百度或者高德的 API, 但是他们收费都很高, 我们可以使用一些…...
mac m1 docker安装nacos
文章目录 引言I m1安装docker1.1 Docker 下载1.2 终端Docker相关命令II docker安装nacos2.1 安装nacos2.2 镜像启动see alsoMac 查看进程端口引言 使用docker方式安装是最方便的 I m1安装docker 1.1 Docker 下载 https://docs.docker.com/docker-for-mac/apple-silicon/点击…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
算法250609 高精度
加法 #include<stdio.h> #include<iostream> #include<string.h> #include<math.h> #include<algorithm> using namespace std; char input1[205]; char input2[205]; int main(){while(scanf("%s%s",input1,input2)!EOF){int a[205]…...
