当前位置: 首页 > news >正文

python中savgol_filter的详细解释

目录

  • savgol_filter简介
  • savgol_filter原理
  • 参数window_length对平滑的效果
  • 参数polyorder的平滑效果

savgol_filter简介

Savitzky-Golay滤波器最初由Savitzky和Golay于1964年提出,是光谱预处理中常用滤波方法,它的核心思想是对一定长度窗口内的数据点进行k阶多项式拟合,从而得到拟合后的结果。对它进行离散化处理后后,S-G 滤波其实是一种移动窗口的加权平均算法,但是其加权系数不是简单的常数窗口,而是通过在滑动窗口内对给定高阶多项式的最小二乘拟合得出。这种滤波器最大的特点在于在滤除噪声的同时可以确保信号的形状、宽度不变。

它对信号的操作是在时域内对window_length内的数据进行多项式拟合。而从频域上看,这种拟合实际就是通过了低频数据,而滤掉了高频数据。

这种滤波其实是一种移动窗口的加权平均算法,但是其加权系数不是简单的常数窗口,而是通过在滑动窗口内对给定高阶多项式的最小二乘拟合得出。

总之,平滑滤波是光谱分析中常用的预处理方法之一。用Savitzky-Golay方法进行平滑滤波,可以提高光谱的平滑性,并降低噪音的干扰。S-G平滑滤波的效果,随着选取窗宽不同而不同,可以满足多种不同场合的需求。

savgol_filter原理

表达式为:
scipy.signal.savgol_filter(x, window_length, polyorder)

详细表达式和定义可以查看下面链接:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html

参数的含义:

1、x为要滤波的信号;

2、window_length即窗口长度;取值为奇数且不能超过len(x)。它越大,则平滑效果越明显;越小,则更贴近原始曲线。

3、polyorder为多项式拟合的阶数。它越小,则平滑效果越明显;越大,则更贴近原始曲线。

参数window_length对平滑的效果

import os
import matplotlib.pyplot as plt
import scipy.signal
import numpy as npdef main():# 项目目录dir = "D:\\a_user_file\\8_data"filename = '1.csv'path = os.path.join(dir, filename)with open(path, "r") as fname:data = fname.read()lines = data.split("\n")lines = lines[1:5000]raw_data = []for i in range(len(lines)):line_i = lines[i].split(",")raw_data.append(int(line_i[4]))#sig = denoise(raw_data)sig = raw_datatmp_smooth1 = scipy.signal.savgol_filter(sig, 21, 3)tmp_smooth2 = scipy.signal.savgol_filter(sig, 53, 3)plt.subplot(3,1,1)plt.plot(sig)# plt.semilogx(sig, label='mic')plt.subplot(3,1,2)plt.plot(tmp_smooth1 * 0.5, label='mic'  + '拟合曲线-21', color='red')plt.subplot(3,1,3)plt.plot(tmp_smooth2 * 0.5, label='mic'  + '拟合曲线-53', color='green')plt.show()main()

结果显示为:
在这里插入图片描述
可以看到,window_length的值越小,曲线越贴近真实曲线;window_length值越大,平滑效果越厉害。

参数polyorder的平滑效果

代码如下:

import os
import matplotlib.pyplot as plt
import scipy.signal
import numpy as npdef main():# 项目目录dir = "D:\\a_user_file\\8_data"filename = '1.csv'path = os.path.join(dir, filename)with open(path, "r") as fname:data = fname.read()lines = data.split("\n")lines = lines[1:5000]raw_data = []for i in range(len(lines)):line_i = lines[i].split(",")raw_data.append(int(line_i[4]))#sig = denoise(raw_data)sig = raw_datatmp_smooth1 = scipy.signal.savgol_filter(sig, 53, 9)tmp_smooth2 = scipy.signal.savgol_filter(sig, 53, 3)plt.subplot(3,1,1)plt.plot(sig)# plt.semilogx(sig, label='mic')plt.subplot(3,1,2)plt.plot(tmp_smooth1 * 0.5, label='mic'  + '拟合曲线-21', color='red')plt.subplot(3,1,3)plt.plot(tmp_smooth2 * 0.5, label='mic'  + '拟合曲线-53', color='green')plt.show()main()

显示的效果如下:
在这里插入图片描述
可以看出参数polyorder(多项式阶数)越大,曲线越贴近真实曲线;polyorder值越小,曲线平滑越厉害。

注:当polyorder值较大时,受窗口长度限制,拟合会出现问题,高频曲线会变成直线,

参考:
https://blog.csdn.net/sinat_21258931/article/details/79298478
https://blog.csdn.net/weixin_43821212/article/details/100016021
https://blog.csdn.net/kaever/article/details/105520941

相关文章:

python中savgol_filter的详细解释

目录savgol_filter简介savgol_filter原理参数window_length对平滑的效果参数polyorder的平滑效果savgol_filter简介 Savitzky-Golay滤波器最初由Savitzky和Golay于1964年提出,是光谱预处理中常用滤波方法,它的核心思想是对一定长度窗口内的数据点进行k阶…...

C语言--指针进阶1

目录回顾字符指针指针数组数组指针&数组名和数组名的区别数组指针的使用指针作为形参练习数组参数、指针参数一维数组传参二维数组传参一级指针传参二级指针传参回顾 指针的内容,我们在初级阶段已经有所涉及了,我们先来复习一下 指针就是个变量&am…...

ssh的使用

Halo,这里是Ppeua。平时主要更新C语言,C,数据结构算法......感兴趣就关注我吧!你定不会失望。 🌈个人主页:主页链接 🌈算法专栏:专栏链接 我会一直往里填充内容哒! &…...

Apache Hadoop生态-目录汇总-持续更新

目录 1:系统服务分布图 3台分布式架构 1台单机架构 服务版本介绍 2:服务目录 存储相关 数据采集 任务调度 即席查询 数据可视化 集群监控 元数据管理 用户认证 权限管理 第三方windows客户端 1:系统服务分布图 3台分布式架构…...

「JVM 编译后话」编译器优化技术

后端编译(即时编译、提前编译)的目标时将字节码翻译成本地机器码,而难点是输出优化质量较高的机器码; 文章目录1. 优化技术概览2. 方法内联(Inlining)3. 逃逸分析(Escape Analysis)4…...

【python学习笔记】:输出与输入

01 输出方式 表达式语句、print()函数和使用文件对象的write()方法。 02 输出形式 格式化输出str.format()函数、转成字符串可以使用repr()或str()函数来实现。 (1)repr():产生一个解释器易读的表达形式,便于字符串的拼接。 例:输出平方与…...

汽车电子社区交流宣传

http://t.csdn.cn/VSLO0http://t.csdn.cn/VSLO0 当今的汽车行业已经进入了数字化时代,汽车电子软件的开发变得越来越重要。在这个领域,开发者们需要应对各种挑战,包括复杂的硬件和软件交互、高效的嵌入式编程和安全性要求。为了帮助汽车电子…...

String、StringBuilder 和 StringBuffer 详解

碎碎念 这是一道老生常谈的问题了,字符串是不仅是 Java 中非常重要的一个对象,它在其他语言中也存在。比如 C、Visual Basic、C# 等。字符串使用 String 来表示,字符串一旦被创建出来就不会被修改,当你想修改StringBuffer 或者是 …...

windows服务器上传文件解决方案

1.说明 1.如果上传到linux系统,通常使用ftp相关技术,配合windows端的ftp客户端工具比如FileZilla等进行大文件的上传工作。 2.同理windows服务器也可以开启ftp服务用来传输大文件。 3.本文介绍偷懒方式(常规是开启windows的ftp服务&#xff0…...

Android Studio翻译插件推介(Translation)

前言 Android Studio翻译插件适合英语水平不太好的程序员(比如:我),最常用的翻译插件Translation和AndroidLocalize,本文主要讲解Translation,亲测可用。 先看看效果:这里是Android的API,任意选…...

DNS,DNS污染劫持,DNS加密

1. DNS(Domain Name System)DNS(Domain Name System), 也叫网域名称系统,是互联网的一项服务。它实质上是一个 域名 和 IP 相互映射的分布式数据库.DNS(Domain Name Server,域名服务…...

【Python】如何度量优秀代码——静态分析工具

静态分析工具背景有哪些静态分析工具呢度量Python代码的静态属性度量Python的生态系统代码的坏味道在类层面上在方法层面上结语背景 静态代码分析工具能够提炼出丰富的代码静态属性信息,这使得程序员可以对代码的复杂性、可修改性和可读性有进一步的了解。 有哪些…...

Open3D 点云高程归一化(基于2维地面点,Python版本)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 之前的博客中Open3D 点云高程归一化(基于地面点,Python版本)是基于三维空间进行最近地面点的查询操作,这里对其进行修改一下,将点云投影到水平面,基于二维空间进行最近地面点的查询,这种方式对一些较为陡峭的…...

动态系统的建模与分析

前言 CS小菜鸡控制理论入门 视频学习笔记 视频传送门:动态系统的建模与分析】9_一阶系统的频率响应_低通滤波器_Matlab/Simulink分析 拉普拉斯变换 F(s)L{f(t)}∫0∞f(t)e−stdtF(s)\mathcal{L}\{f(t)\}\int_0^\infty f(t)e^{-st}\mathrm{d}tF(s)L{f(t)}∫0∞​f(t)…...

QCC51XX---HCI log

高通在新的S3/S5以及往后新的平台上面,引入了一个新的调试功能。就是标题说的HCI log,他类似air trace那样用来分析蓝牙协议的,这样我们就可以很详细地找到通信协议之间哪个部分出了问题。以前我们都是通过抓包器抓air trace分析的,抓包器一个要几十万,学会这个功能就相当…...

Redis四 原理篇

《Redis四 原理篇》 提示: 本材料只做个人学习参考,不作为系统的学习流程,请注意识别!!! 《Redis四 原理篇》《Redis四 原理篇》1、原理篇-Redis数据结构1.1 Redis数据结构-动态字符串1.2 Redis数据结构-intset1.3 Redis数据结构-Dict1.4 Redis数据结构-ZipList1.4.1 Redis数据…...

从0开始写Vue项目-Vue实现数据渲染和数据的增删改查

从0开始写Vue项目-环境和项目搭建_慕言要努力的博客-CSDN博客从0开始写Vue项目-Vue2集成Element-ui和后台主体框架搭建_慕言要努力的博客-CSDN博客从0开始写Vue项目-Vue页面主体布局和登录、注册页面_慕言要努力的博客-CSDN博客从0开始写Vue项目-SpringBoot整合Mybatis-plus实现…...

AI技术的发展,人工智能对我们的生活有那些影响?

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一…...

Unity中的Mathf数学运算讲解(值得收藏)

Unity中的Mathf数学运算有哪些? Mathf.Abs(f)绝对值 计算并返回指定参数 f 绝对值 例如: // 输出 10 Debug.log(Mathf.Abs(-10)) Debug.log(Mathf.Abs(10))Mathf.Sin正弦 static function Sin (f : float) : float 计算并返回以弧度为单位指定的角 f 的…...

ABBYY FineReader16最新PDF图片文字识别软件

ABBYY FineReader16是非常好的一款 OCR 识别软件(可以识别不可编辑的PDF和图片文件),操作非常简单。ABBYY FineReader 16是一款知名的OCR文字识别软件(图片文字识别)。ABBYY 16采用了ABBYY最新推出的基于AI的OCR技术&a…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...