当前位置: 首页 > news >正文

第三章 图标辅助元素的定制

第三章 图标辅助元素的定制

1.认识图表常用的辅助元素

​ 图表的辅助元素是指除了根据数据绘制的图形之外的元素,常用的辅助元素包括坐标轴、标题、图例、网格、参考线、参考区域、注释文本和表格,它们都可以对图形进行补充说明

在这里插入图片描述

​ 上图中图表常用辅助元素的说明如下:

  • 坐标轴:分为单坐标轴和双坐标轴,单坐标轴按不同的方向又可分为水平坐标轴(又称x轴)和垂直坐标轴(又称y轴)。

  • 标题:表示图表的说明性文本。

  • 图例:用于指出图表中各组图形采用的标识方式。

  • 网格:从坐标轴刻度开始的、贯穿绘图区域的若干条线,用于作为估算图形所示值的标准。

  • 参考线:标记坐标轴上特殊值的一条直线。

  • 参考区域:标记坐标轴上特殊范围的一块区域。

  • 注释文本:表示对图形的一些注释和说明。

  • 表格:用于强调比较难理解数据的表格。

    坐标轴是由刻度标签、刻度线(主刻度线和次刻度线)、轴脊和坐标轴标签组成。

image-20230917092508061

​ “x轴”为坐标轴的标签,“0”“7”均为刻度标签,“0”“7”对应的短竖线为刻度线,且为主刻度线,刻度线上方的横线为轴脊。需要说明的是,matplotlib中的次刻度线默认是隐藏的

​ 需要注意的是:不同的图表具有不同的辅助元素,比如饼图是没有坐标轴的,而折线图是有坐标轴的,大家可根据实际需求进行定制。

2.设置坐标轴的标签、刻度范围和刻度标签

​ 坐标轴对数据可视化效果有着直接的影响。坐标轴的刻度范围过大或过小、刻度标签过多或过少,都会导致图形显示的比例不够理想。我们可以使用下面的一些方法来进行设置。

2.1.设置坐标轴的标签

​ matplotlib提供了设置x轴和y轴标签的方式。

  1. 设置x轴的标签:直接使用pyplot的xlabel()函数设置x轴的标签,语法格式如下:
xlabel(xlabel, fontdict=None, labelpad=None, **kwargs)
  • xlabel:表示x轴标签的文本

  • fontdict:表示控制标签文本样式的字典。

  • labelpad:表示标签与x轴轴脊间的距离

    2.设置y轴的标签:直接使用pyplot的ylabel()函数设置y轴的标签,语法格式如下:

ylabel(ylabel, fontdict=None, labelpad=None, **kwargs)
  • ylabel:表示y轴标签的文本
  • fontdict:表示控制标签文本样式的字典。
  • labelpad:表示标签与y轴轴脊的距离

Axes对象使用set_xlabel()方法可以设置x轴的标签,使用set_ylabel()方法可以设置y轴的标签。set_xlabel()set_ylabel()方法与xlabel()ylabel()函数的参数用法相同。

​ 假设现在有一个包含正弦曲线和余弦曲线的图表,该图表中设置x轴和y轴的标签,图标如下:

image-20230917093613739
import numpy as np
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falsex = np.linspace(-np.pi, np.pi, 256, endpoint=True)
y1, y2 = np.sin(x), np.cos(x)
plt.plot(x, y1, x, y2)
# 设置x轴和y轴的标签
plt.xlabel("x轴")
plt.ylabel("y轴")
plt.show()
image-20230922154832511

2.2.设置刻度范围和刻度标签

​ 当绘制图表时,坐标轴的刻度范围和刻度标签都与数据的分布有着直接的联系,即坐标轴的刻度范围取决于数据中的最大值和最小值。

  • 若没有指定任何数据,x轴和y轴的刻度范围为0.05~1.05,刻度标签为[-0.2, 0. 0, 0.2, 0.4, 0.6, 0.8, 1. 0, 1.2];
  • 若指定了数据,刻度范围和刻度标签会随着数据的变化而变化。

1.**设置刻度范围:**使用pyplot模块的xlim()ylim()函数分别可以设置或获取x轴和y轴的刻度范围。

xlim(left=None, right=None,  emit=True, auto=False, *, xmin=None, xmax=None)  
  • left:表示x轴刻度取值区间的左位数。

  • right:表示x轴刻度取值区间的右位数。

  • emit:表示是否通知限制变化的观察者,默认为True。

  • auto:表示是否允许自动缩放x轴,默认为True。

    此外,Axes对象可以使用set_xlim()或set_ylim()方法设置x轴或y轴的刻度范围。

2.**设置刻度标签:**使用pyplot模块的xticks()yticks()函数可以设置x轴或y轴的刻度线位置和刻度标签。

xticks(ticks=None, labels=None, **kwargs) 
  • ticks:表示刻度显示的位置列表,该参数可以设置为空列表,以此禁用x轴的刻度。

  • labels:表示指定位置刻度的标签列表。

    此外,Axes对象可以使用set_xticks()或set_yticks()方法设置x轴或y轴的刻度线位置,使用set_xticklabels()或set_yticklabels()方法设置x轴或y轴的刻度标签。

import numpy as np
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falsex = np.linspace(-np.pi, np.pi, 256, endpoint=True)
y1, y2 = np.sin(x), np.cos(x)
plt.plot(x, y1, x, y2)
# 设置x轴和y轴的标签
plt.xlabel("x轴")
plt.ylabel("y轴")
# 设置x轴的刻度范围和刻度标签
plt.xlim(x.min() * 1.5, x.max() * 1.5)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2,np.pi],  [r'$-\pi$', r'$-\pi/2$',r'$0$', r'$\pi/2$', r'$\pi$'])plt.show()
image-20230922155710290

2.3.示例:2019年中国电影票房排行榜

​ 假如你有一段闲暇时间,到影院观影会是个不错的选项。如今,看电影已经成为人们休闲娱乐的方式之一,它不仅是一种视觉享受,而且是一场精神盛宴,使人们放松身心。

​ 本实例要求根据下表的数据,将电影名称列的数据作为y轴的刻度标签 ,将总票房(亿元)列的数据作为条形数据,使用barh()函数绘制下图所示的条形图,并设置坐标轴标签和刻度标签。

image-20230922155821159image-20230922155829725

image-20230922155845011

​ 由图可知,电影《哪吒之魔童降世》的总票房最高,《流浪地球》的总票房排行第二,《复仇者联盟4:终局之战》的总票房排行第三。

import numpy as np
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falselabels = ['哪吒之魔童降世', '流浪地球', '复仇者联盟4:终局之战','疯狂的外星人', '飞驰人生', '烈火英雄', '蜘蛛侠:英雄远征','速度与激情:特别行动', '扫毒2:天地对决', '大黄蜂','惊奇队长', '比悲伤更悲伤的故事', '哥斯拉2:怪兽之王','阿丽塔:战斗天使', '银河补习班']
bar_width = [48.57, 46.18, 42.05, 21.83, 17.03, 16.70, 14.01,13.84, 12.85, 11.38, 10.25, 9.46, 9.27, 8.88, 8.64]
y_data = range(len(labels))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.barh(y_data, bar_width, height=0.2, color='orange')
# 设置x轴和y轴的标签
ax.set_xlabel("总票房(亿元)")
ax.set_ylabel("电影名称")
# 设置y轴的刻度线位置、刻度标签
ax.set_yticks(y_data)
ax.set_yticklabels(labels)
plt.show()
image-20230925140519218

3.添加标题和图例

3.1.添加标题

​ 使用pyplot模块的title()函数可以添加图表标题。其语法格式如下:

title(label, fontdict=None, loc=‘center’, pad=None, **kwargs) 
  • label:表示标题的文本。
  • fontdict:表示控制标题文本样式的字典。
  • loc:表示标题的对齐样式。
  • pad:表示标题与图表顶部的距离,默认为None。

Axes对象还可以使用set_title()方法为图表添加标题。

image-20230925140730006

​ 在2.1设置坐标轴的案例中,添加标题:

plt.title("正弦曲线和余弦曲线")

3.2.添加图例

​ 图例是一个列举的各组图形数据标识方式的方框图,它由图例标识和图例项两部分构成,其中图例标识是代表各组图形的图案;图例项是与图例标识对应的名称。

image-20230925141113777

​ 当在使用matplotlib绘制包含多组图形的图表时,我们可以在图表中添加图例,帮助用户明确每组图形代表的含义。使用pyplot模块的legend()函数可以为图表添加图例。其语法格式如下:

legend(handles, labels, loc, bbox_to_anchor, ncol, title, shadow, fancybox, *args, **kwargs) 
  • handles:表示由图形标识构成的列表。
  • labels:表示由图例项构成的列表。
  • loc:用于控制图例在图表中的位置。
  • ncol:表示图例的列数,默认值为1。
  • title:表示图例的标题,默认值为None。
  • shadow :表示是否在图例后面显示阴影,默认值为None。
  • fancybox:表示是否为图例设置圆角边框,默认值为None

​ 在使用pyplot的绘图函数绘图时,若已经预先通过label参数指定了显示于图例的标签,则后续可以直接调用legend()函数添加图例。
​ 若未预先指定应用于图例的标签,则后续在调用legend()函数时为handles和labels参数传值即可。

  • 预先指定图例标签:
ax.plot([1, 2, 3], label='Inline label')
ax.legend()
  • 预先未指定图例标签:
ax.legend((line1, line2, line3), ('label1', 'label2', 'label3')) 

在3.1添加标题的案例中,添加图例:

# 添加图例
lines = plt.plot(x, y1, x, y2)
plt.legend(lines, ['正弦', '余弦'], shadow=True, fancybox=True)
image-20230925142049859

3.3.实例:支付宝月账单报告

​ 支付宝月账单报告的饼图中每个扇形的含义均标注到圆外,由于代表每个扇形含义的文字长短不一且数量偏多,导致图表显得比较杂乱。

​ 本实例要求将原饼图中所有的标注文字移动到图例中,以图例的形式来标注每个扇形代表的含义,使饼图显得更加简洁。

image-20230925142226148
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
# 饼状图外侧文字说明
kinds = ['购物', '人情往来', '餐饮美食', '通信物流', '生活日用','交通通行', '休闲娱乐', '其他']
# 饼状图数据
money_scale = [800/3000, 100/3000, 1000/3000, 200/3000,300/3000, 200/3000, 200/3000, 200/3000]
dev_position = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
# 饼图绘制
plt.pie(money_scale, labels=kinds, autopct='%3.1f%%', shadow=True,explode=dev_position, startangle=90)
# 添加标题
plt.title('支付宝月账单报告')
# 添加图例
plt.legend(kinds, loc='upper right', bbox_to_anchor=[1.3, 1.1])
plt.show()
image-20230925142546387

4.显示网格

4.1.显示指定网格

​ 网格是从刻度线开始延伸,贯穿至整个绘图区域的辅助线条,它能帮助人们轻松地查看图形的数值。网格可以分为垂直网格和水平网格,这两种网格既可以单独使用,也可以同时使用。

​ 使用pyplot模块的grid()函数可以显示图表中的网格。其语法格式如下:

grid(b=None, which='major', axis='both', **kwargs) 
  • b:表示是否显示网格。

  • which:表示显示网格的类型,默认为major。

  • axis:表示显示哪个方向的网格,默认为both。

  • linewidthlw:网格线的宽度。

    还可以使用Axes对象的grid()方法显示网格。

    **注意:**若坐标轴没有刻度,则将无法显示网格。

​ 在3.2的案例中,我们添加网格:

plt.grid(axis='y', linewidth=0.3)
image-20230925143133228

4.2.实例:汽车速度与制动距离的关系(添加网格)

​ 我们用散点图表示汽车速度与制动距离关系,很多圆点因距离坐标轴较远而无法准确的看出数值,因此我们需要将它们显示在网格中,并调整坐标轴刻度:

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 准备x轴和y轴数据
x_speed = np.arange(10, 210, 10)
y_distance = np.array([0.5, 2.0, 4.4, 7.9, 12.3, 17.7,24.1, 31.5, 39.9, 49.2, 59.5, 70.8,83.1, 96.4, 110.7, 126.0, 142.2,159.4, 177.6, 196.8])
# 绘制散点图
plt.scatter(x_speed, y_distance, s=50, alpha=0.9)
# 设置x轴的标签、刻度标签
plt.xlabel('速度(km/h)')
plt.ylabel('制动距离(m)')
plt.xticks(x_speed)
# 显示网格
plt.grid(linewidth=0.3)
plt.show()
image-20230925143938666

5.添加参考线和参考区域

5.1.添加参考线

​ 参考线是一条或多条贯穿绘图区域的线条,用于为绘图区域中图形数据之间的比较提供参考依据,比如目标线、平均线、预算线等。参考线按方向的不同可分为水平参考线和垂直参考线。

1.使用axhline()绘制水平参考线

axhline(y=0, xmin=0, xmax=1, linestyle='-', **kwargs)
  • y:表示水平参考线的纵坐标。
  • xmin:表示水平参考线的起始位置,默认为0。
  • xmax:表示水平参考线的终止位置,默认为1。
  • linestyle:表示水平参考线的类型,默认为实线。

2.使用axvline()绘制垂直参考线

axvline(x=0, ymin=0, ymax=1, linestyle='-', **kwargs)
  • x:表示垂直参考线的横坐标。
  • ymin:表示垂直参考线的起始位置,默认为0。
  • ymax:表示垂直参考线的终止位置,默认为1。
  • linestyle:表示垂直参考线的类型,默认为实线。

在4.1的案例中添加参考线:

# 添加参考线
plt.axvline(x=0, linestyle='--')
plt.axhline(y=0, linestyle='--')
image-20230925144428581

5.2.添加参考区域

1.使用axhspan()添加水平参考区域

axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs) 
  • ymin:表示水平跨度的下限,以数据为单位。
  • ymax:表示水平跨度的上限,以数据为单位。
  • xmin:表示垂直跨度的下限,以轴为单位,默认为0。
  • xmax:表示垂直跨度的上限,以轴为单位,默认为1。

2.使用axvspan()添加水平参考区域

axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs) 
  • xmin:表示垂直跨度的下限。
  • xmax:表示垂直跨度的上限。

在5.1的案例中添加参考区域:

# 添加参考区域
plt.axvspan(xmin=0.5, xmax=2.0, alpha=0.3)
plt.axhspan(ymin=0.5, ymax=1.0, alpha=0.3) 
image-20230925144924589

5.3.全校高二年级各班男女生英语成绩评估

​ 某高中高二年级模拟考试后,学校对该年级各班各学科的平均成绩进行了统计,计算出全体高二年级的英语平均成绩为88.5。

​ 本实例要求根据下表的数据,绘制展示各班男生、女生英语平均成绩的柱形图,并将全体高二年级的英语平均成绩绘制成参考线 。

image-20230925150044580 image-20230925150103477

import numpy as np
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
men_means = (90.5, 89.5, 88.7, 88.5, 85.2, 86.6)
women_means = (92.7, 87.0, 90.5, 85.0, 89.5, 89.8)
# 每组柱形的x位置
ind = np.arange(len(men_means))
# 各柱形的宽度
width = 0.2
fig = plt.figure()
ax = fig.add_subplot(111)
ax.bar(ind - width / 2, men_means, width, label='男生平均成绩')
ax.bar(ind + 0.2, women_means, width, label='女生平均成绩')
ax.set_title('高二各班男生、女生英语平均成绩')
ax.set_ylabel('分数')
ax.set_xticks(ind)
ax.set_xticklabels(['高二1班', '高二2班', '高二3班', '高二4班', '高二5班','高二6班'])# 添加参考线
ax.axhline(88.5, ls='--', linewidth=1.0, label='全体平均成绩')
ax.legend(loc='lower right')
plt.show()
image-20230925151030751

6.添加注释文本

​ 注释文本是图表的重要组成部分,它能够对图形进行简短地描述,有助于用户理解图表。注释文本按注释对象的不同主要分为指向型注释文本和无指向型注释文本,其中指向型注释文本一般是针对图表某一部分的特定说明,无指向型注释文本一般是针对图表整体的特定说明。

6.1.添加指向型注释文本

​ 指向型注释文本是指通过指示箭头的注释方式对绘图区域的图形进行解释的文本,它一般使用线条连接说明点和箭头指向的注释文字。

​ 使用pyplot模块的annotate()函数可以为图表添加指向型注释文本。其语法格式如下:

annotate(s, xy, *args, **kwargs) 
  • s:表示注释文本的内容。
  • xy:表示被注释的点的坐标位置,接收元组(x,y)。
  • xytext :表示注释文本所在的坐标位置,接收元组(x,y)。
  • arrowprops :表示指示箭头的属性字典。
  • bbox:表示注释文本的边框属性字典。

参数说明:

  • arrowprops 参数接收一个包含若干键的字典,通过向字典中添加键值对以控制箭头的显示。常见的控制箭头的键包括width、headwidth、headlength、shrink、arrowstyle等。
  • arrowstyle代表箭头的类型,该键对应的值及其类型如下图所示。
image-20230925151335577

在5.2的案例中,我们为正弦添加一个注释文本:

# 添加指向型注释文本
plt.annotate('最小值', xy=(-np.pi / 2, -1.0), xytext=(-(np.pi / 2), -0.5), arrowprops=dict(arrowstyle="->")) 
image-20230925151547801

6.2.添加无指向型注释文本

​ 无指向型注解文本是指仅使用文字的注释方式对绘图区域的图形进行说明的文本。

​ 使用pyplot模块的text()函数可以为图表添加无指向型注释文本。其语法格式如下:

text(x, y, s, fontdict=None, withdash=<deprecated parameter>, **kwargs) 
  • x, y:表示注释文本的位置。
  • s:表示注释文本的内容。
  • horizontalalignmentha:表示水平对齐的方式,可以取值为’center’、'right’或 ‘left’。
  • verticalalignmentva:表示垂直对齐的方式,可以取值为’center’、‘top’、‘bottom’、‘baseline’或’center_baseline’

在6.1的案例中添加无指向型注释文本:

# 添加无指向型注释文本
plt.text(3.10, 0.10, "y=sin(x)", bbox=dict(alpha=0.2))  
image-20230925151852272

6.3.实例:2013—2019财年阿里巴巴淘宝和

天猫平台的GMV(添加注释文本)

​ 柱形图经常会与注释文本配合使用,在柱形的顶部标注柱形代表的具体数值。2.2.2节实例中的柱形图描述了阿里巴巴淘宝和天猫平台的GMV,但图中的矩形条缺少具体的数值。

​ 本实例要求对前面的柱形图进行调整,在每个柱形的顶部添加无指向型注释文本,并设置y轴的标签。

image-20230925152524383
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = np.arange(1, 8)
y = np.array([10770, 16780, 24440, 30920, 37670, 48200, 57270])
# 绘制柱形图
bar_rects = plt.bar(x, y, tick_label=['FY2013', 'FY2014', 'FY2015', 'FY2016','FY2017', 'FY2018', 'FY2019'], width=0.5)
# 添加无指向型注释文本
def autolabel(rects):"""在每个矩形条的上方附加一个文本标签,以显示其高度"""for rect in rects:height = rect.get_height()  # 获取每个矩形条的高度plt.text(rect.get_x() + rect.get_width() / 2,height + 300, s='{}'.format(height),ha='center', va='bottom')
autolabel(bar_rects)
plt.ylabel('GMV(亿元)')
plt.show()
image-20230925153208025

6.4.拓展:matplotlib编写数学表达式

​ matplotlib中自带mathtext引擎,通过该引擎可以自动识别使用annotate()或text()函数传入的数学字符串,并解析成对应的数学表达式。

​ 数学字符串有着固定的格式,它要求字符串以美元符号“$”为首尾字符,且首尾字符中间包裹数学表达式。

'$数学表达式$'

​ 为保证字符串中的所有字符能以字面的形式显示,数学字符串需要配合“r”使用。

r'$\alpha > \beta$'
image-20230925152203463

​ \alpha”和“\beta”的后面还可以增加上标和下标,其中上标使用符号“^”表示,下标使用符号“_”表示。

r'$\alpha_i > \beta_i$'
image-20230925152247914

​ matplotlib中使用“ \frac{}{}”可以编写分数形式的数字字符串,“\frac”的后面的两个中括号分别代表分数的分子和分母。

r'$\frac{3}{4}$'
image-20230925152320147

​ 还可以编写分数嵌套的数学字符串。

r'$\frac{5 - \frac{1}{x}}{4}$' 
image-20230925152351654

7.添加表格

7.1.用table()添加表格

​ 使用pyplot模块的table()函数可以为图表添加数据表格。其语法格式如下:

table(cellText=None, cellColours=None, cellLoc='right', colWidths=None,, **kwargs) 
  • cellText:表示表格单元格中的数据,可以是一个二维列表。
  • cellColours:表示单元格的背景颜色。
  • cellLoc:表示单元格文本的对齐方式,支持’left’、‘center’、‘right’三种取值,默认值为’right’。
  • colWidths:表示每列的宽度。
  • rowLabels:表示行标题的文本。
  • rowLoc:表示行标题的对齐方式。
  • colLabels:表示列标题的文本。
  • colColours:表示列标题所在单元格的背景颜色。
  • colLoc:表示列标题的对齐方式。
  • loc:表示表格对于绘图区域的对齐方式。

在6.2中添加表格:

# 添加表格
plt.table(cellText=[[6, 6, 6], [8, 8, 8]], colWidths=[0.1] * 3, rowLabels=['第1行', '第2行'], colLabels=['第1列', '第2列', '第3列'], loc='lower right')  
image-20230925153726754

7.2.果酱面包配料比例

​ 美好的一天从早餐开始,果酱面包是一道深受大家喜爱的美食,无论是大人还是小孩,都对果酱面包赞不绝口。

​ 本实例要求根据下表的数据,将配料名称列的数据作为图例项,将重量列的数据与总重量的比例作为数据,使用pie()绘制果酱面包配料比例的饼图,并将各种配料的重量以数据表格的形式添加到图表中,方便用户了解各种配料的占比和重量。

image-20230925153909881

import numpy as np
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
kinds = ['面粉', '全麦面', '酵母', '苹果酱', '鸡蛋', '黄油', '盐', '白糖']
weight = [250, 150, 4, 250, 50, 30, 4, 20]
total_weight = 0
for i in weight:total_weight += 1
batching_scale = [i / total_weight for i in weight]
plt.pie(batching_scale, autopct='%3.1f%%')
plt.legend(kinds, loc='upper right', bbox_to_anchor=[1.1, 1.1])
# 添加表格
plt.table(cellText=[weight],cellLoc='center',rowLabels=['重量(g)'],colLabels=kinds,loc='lower center')
plt.show()
image-20230925154504163

ms[‘axes.unicode_minus’] = False
kinds = [‘面粉’, ‘全麦面’, ‘酵母’, ‘苹果酱’, ‘鸡蛋’, ‘黄油’, ‘盐’, ‘白糖’]
weight = [250, 150, 4, 250, 50, 30, 4, 20]
total_weight = 0
for i in weight:
total_weight += 1
batching_scale = [i / total_weight for i in weight]
plt.pie(batching_scale, autopct=‘%3.1f%%’)
plt.legend(kinds, loc=‘upper right’, bbox_to_anchor=[1.1, 1.1])

添加表格

plt.table(cellText=[weight],
cellLoc=‘center’,
rowLabels=[‘重量(g)’],
colLabels=kinds,
loc=‘lower center’)
plt.show()


<img src="https://img-blog.csdnimg.cn/img_convert/3d0ff7bfae600328d8bd513c382ad711.png" alt="image-20230925154504163" style="zoom:50%;" />

相关文章:

第三章 图标辅助元素的定制

第三章 图标辅助元素的定制 1.认识图表常用的辅助元素 ​ 图表的辅助元素是指除了根据数据绘制的图形之外的元素&#xff0c;常用的辅助元素包括坐标轴、标题、图例、网格、参考线、参考区域、注释文本和表格&#xff0c;它们都可以对图形进行补充说明。 ​ 上图中图表常用辅…...

【前端】ECMAScript6从入门到进阶

【前端】ECMAScript6从入门到进阶 1.ES6简介及环境搭建 1.1.ECMAScript 6简介 &#xff08;1&#xff09;ECMAScript 6是什么 ECMAScript 6.0&#xff08;以下简称 ES6&#xff09;是 JavaScript 语言的下一代标准&#xff0c;已经在2015年6月正式发布了。它的目标&#xff…...

Android Shape设置背景

设置背景时&#xff0c;经常这样 android:background“drawable/xxx” 。如果是纯色图片&#xff0c;可以考虑用 shape 替代。 shape 相比图片&#xff0c;减少资源占用&#xff0c;缩减APK体积。 开始使用。 <?xml version"1.0" encoding"utf-8"?…...

什么是GraphQL?它与传统的REST API有什么不同?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是GraphQL&#xff1f;⭐ 与传统的REST API 的不同⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣…...

如何定时备份使用Docker构建的MySQL容器中的数据库

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是 DevO…...

Java【手撕链表】LeetCode 143. “重排链表“, 图文详解思路分析 + 代码

文章目录 前言一、两数相加1, 题目2, 思路分析2,1 找到中间结点2.2, 逆序后半段链表2.3, 合并两个链表 3, 代码 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管…...

C语言 cortex-A7核 按键中断 实验【重点】

一、KEY1 include/key.h #ifndef __KEY_H__ #define __KEY_H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_exti.h" #include "stm32mp1xx_gic.h"//RCC/GPIO章节初始化 void hal_rcc_gpio_init…...

freertos中函数调用和启动第一个任务(栈相关!!!!!!)

本内容仅就一些较难理解的点讲解&#xff0c;请结合其它文章实用 在函数调用时&#xff0c;m3的处理器使用r0-r3共四个寄存器传参&#xff0c;其余的使用栈传参。 但是&#xff0c;如果传入的参数是全局变量&#xff0c;则不需传参&#xff0c;因为全局变量在函数内部是可见的…...

【PHP】如何关闭buffer实时输出内容到前端

前言 默认情况下&#xff0c;我们在PHP里使用echo等函数输出的内容&#xff0c;是不会马上发送给前端的&#xff0c;原因是有 buffer 的存在&#xff0c;buffer又分两处&#xff0c;一处是PHP本身的buffer&#xff0c;另一处是Nginx的buffer。只有当buffer满了之后&#xff0c…...

Scala第二章节

Scala第二章节 scala总目录 章节目标 掌握变量, 字符串的定义和使用掌握数据类型的划分和数据类型转换的内容掌握键盘录入功能理解Scala中的常量, 标识符相关内容 1. 输出语句和分号 1.1 输出语句 方式一: 换行输出 格式: println(里边写你要打印到控制台的数据);方式二…...

Spring修炼之路(2)依赖注入(DI)

一、概念 依赖注入&#xff08;Dependency Injection,DI&#xff09;。 测试pojo类 : Address.java 依赖 : 指Bean对象的创建依赖于容器 . Bean对象的依赖资源 . 注入 : 指Bean对象所依赖的资源 , 由容器来设置和装配 . 二、 注入方式 2.1构造器注入 我们在之前的案例已经…...

编写Android.mk / Android.bp 引用三方 jar 包,aar包,so 库

一.前言 在Android10之后&#xff0c;所有项目工程中&#xff0c;官方推荐使用Android.bp去编译构建&#xff0c;以前使用Android.mk构建的项目随着版本迭代升级&#xff0c;慢慢需要变更为Android.bp&#xff0c; 两者的语法都需要去了解并熟练使用。 笔者之前写过Android.mk的…...

【kylin】【ubuntu】搭建本地源

文章目录 一、制作一个本地源仓库制作ubuntu本地仓库制作kylin本地源 二、制作内网源服务器ubuntu系统kylin系统 三、使用内网源ubuntukylin 一、制作一个本地源仓库 制作ubuntu本地仓库 首先需要构建一个本地仓库&#xff0c;用来存放软件包 mkdir -p /path/to/localname/pac…...

为什么 Go 语言 struct 要使用 tags

在 Go 语言中&#xff0c;struct 是一种常见的数据类型&#xff0c;它可以用来表示复杂的数据结构。在 struct 中&#xff0c;我们可以定义多个字段&#xff0c;每个字段可以有不同的类型和名称。 除了这些基本信息之外&#xff0c;Go 还提供了 struct tags&#xff0c;它可以用…...

WebGL笔记:WebGL中JS与GLSL ES 语言通信,着色器间的数据传输示例:用鼠标控制点位

用鼠标控制点位 <canvas id"canvas"></canvas><!-- 顶点着色器 --> <script id"vertexShader" type"x-shader/x-vertex">attribute vec4 a_Position;void main() {// 点位gl_Position a_Position;// 尺寸gl_PointSize…...

算法 主持人调度-(双指针+贪心)

牛客网: BM96 题目: 一个主持人只能参加一个活动&#xff0c;至少需要多少主持人 思路: 对start, end排序从小到大&#xff1b;初始化指针l, r 0, 0&#xff1b;start[r]< end[l]时需要累加人数同时r&#xff0c;否则l,r同时移动&#xff1b;直至不再满中l<n &&am…...

Elasticsearch 集群时的内部结构是怎样的?

Apache Lucene : Flush, Commit Elasticsearch 是一个基于 Apache Lucene 构建的搜索引擎。 它利用 Lucene 的倒排索引、查询处理和返回搜索结果等功能来执行搜索。 它还扩展了 Lucene 的功能&#xff0c;添加分布式处理功能以支持大型数据集的搜索。 让我们看一下 Apache Luc…...

IoTDB 在国际数据库性能测试排行榜中位居第一?测试环境复现与流程详解第一弹!...

最近我们得知&#xff0c;Apache IoTDB 多项性能表现位居 benchANT 时序数据库排行榜&#xff08;Time Series: DevOps&#xff09;性能排行第一名&#xff01;&#xff08;榜单地址&#xff1a;https://benchANT.com/ranking/database-ranking&#xff09; benchANT 位于德国&…...

react项目优化

随着项目体积增大&#xff0c;打包的文件体积会越来越大&#xff0c;需要优化&#xff0c;原因无非就是引入的第三方插件比较大导致&#xff0c;下面我们先介绍如何分析各个文件占用体积的大小。 1.webpack-bundle-analyzer插件 如果是webpack作为打包工具的项目可以使用&…...

青藏高原1-km分辨率生态环境质量变化数据集(2000-2020)

青藏高原平均海拔4000米以上&#xff0c;人口1300万&#xff0c;是亚洲九大河流的源头&#xff0c;为超过15亿人口提供淡水、食物和其他生态系统服务&#xff0c;被誉为地球第三极和亚洲水塔。然而&#xff0c;在该地区的人与自然的关系的研究是有限的&#xff0c;尤其是在精细…...

Nature Communications | 张阳实验室:端到端深度学习实现高精度RNA结构预测

RNA分子是基因转录的主要执行者&#xff0c;也是细胞运作的隐形功臣。它们在基因表达调控、支架构建以及催化活性等多个生命过程中都扮演着关键角色。虽然RNA如此重要&#xff0c;但由于实验数据的缺乏&#xff0c;准确预测RNA 的三维空间结构仍然是目前计算生物学面临的重大挑…...

提升您的Mac文件拖拽体验——Dropzone 4 for mac

大家都知道&#xff0c;在Mac上进行文件拖拽是一件非常方便的事情。然而&#xff0c;随着我们在工作和生活中越来越多地使用电脑&#xff0c;我们对于这个简单操作的需求也越来越高。为了让您的文件拖拽体验更加高效和便捷&#xff0c;今天我们向大家介绍一款强大的工具——Dro…...

Vue之transition组件

Vue提供了transition组件&#xff0c;使用户可以更便捷地添加过渡动画效果。 transition组件 transition组件也是一个抽象组件&#xff0c;并不会渲染出真实dom。Vue会在其第一个真实子元素上添加过渡效果。 props render 这里将render分为两部分&#xff0c;第一部分界定真…...

lenovo联想笔记本电脑ThinkPad X13 AMD Gen2(20XH,20XJ)原装出厂Windows10系统镜像

联想原厂Win10系统&#xff0c;自带所有驱动、出厂主题壁纸、系统属性联想LOGO专属标志、Office办公软件、联想电脑管家等预装程序 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;dolg 适用于型号&#xff1a;20XL,20XJ,20XG,21A1,20XK,20XH,20XF,21A0 所需要…...

php导出cvs,excel打开数字超过16变科学计数法

今天使用php导出cvs&#xff0c;在excel中打开&#xff0c;某一个字段是数字&#xff0c;长度高于16位结果就显示科学计数法 超过15位的话从第16位开始就用0代替了 查询了半天总算解决了就是在后面加上"\t" $data[$key][1] " ".$value[1]."\t";…...

CSS 模糊效果 CSS 黑白效果 CSS调整亮度 对比度 饱和度 模糊效果 黑白效果反转颜色

CSS 模糊效果 CSS 黑白效果 CSS调整亮度 饱和度 模糊效果 黑白效果 实现 调整亮度 饱和度 模糊效果 黑白效果 使用 filter1、模糊2、亮度3、对比度4、饱和度5、黑白效果6、反转颜色7、组合使用8、 filer 完整参数 实现 调整亮度 饱和度 模糊效果 黑白效果 使用 filter 1、模糊…...

蓝桥杯 题库 简单 每日十题 day11

01 质数 质数 题目描述 给定一个正整数N&#xff0c;请你输出N以内&#xff08;不包含N&#xff09;的质数以及质数的个数。 输入描述 输入一行&#xff0c;包含一个正整数N。1≤N≤10^3 输出描述 共两行。 第1行包含若干个素数&#xff0c;每两个素数之间用一个空格隔开&…...

dart flutter json 转 model 常用库对比 json_serializable json_model JsonToDart

1.对比 我是一个初学者,一直跟着教材用原生的json,最近发现实在太麻烦了.所以搜索了一下,发现真的有很多现成的解决方案. 网页 https://app.quicktype.io/?ldart 这个是测试下来最好用的 有很多选项,可以使用 json_serializable 也可以不使用 json_serializable 这是推荐最…...

nginx启用了自动目录列表功能的安全漏洞修复方法

一、前言 最近被扫描到安全漏洞&#xff0c;说是nginx启用了自动目录列表功能&#xff0c;现象就是访问http://localhost/file就能看到服务器上的目录 二、修复方法 1.把nginx.conf中的autoindex on改为autoindex off location /file {alias /myuser/userfile/file;autoi…...

vector向量类使用

向量是最简单的 STL 容器&#xff0c;其数据结构与数组相似&#xff0c;占据着一个连续的内存块。 由于内存位置是连续的&#xff0c;所以向量中的元素可以随机访问&#xff0c;访问向量中任何一个元素的时间也是固定的。存储空间的管理是自动的&#xff0c;当要将一个元素插入…...

b2b网站建设方案长沙/餐饮营销方案

欢迎关注”生信修炼手册”!和GEO数据库类似&#xff0c;ArrayExpress是属于EBI旗下的公共数据库&#xff0c;用于存放芯片和高通量测序的相关数据&#xff0c;网址如下>https://www.ebi.ac.uk/arrayexpress/数据来源于下图所示的两个部分第一部分是由科研工作者提交的数据&a…...

网站信息 订阅如何做/快速网站排名优化

这里的this 指的是你的方法或成员或操作火灾的这个类&#xff0c;this在这里的作用是说明,你必须在该类里面来实现ActionListener里面的actionPerformed方法,其实(Object t);这里的参数的意思是&#xff0c;这个t是哪个类的对象&#xff0c;那么那个类就负责来实现接口的方法&a…...

济南做网站哪好/郑州网络推广方案

CPU&#xff08;Central Processing Unit&#xff0c;中央处理器&#xff09;发展出来三个分枝&#xff0c;一个是DSP&#xff08;Digital Signal Processing/Processor&#xff0c;数字信号处理&#xff09;&#xff0c;另外两个是MCU&#xff08;Micro Control Unit&#xff…...

数字尾巴+wordpress/互联网培训机构排名前十

查找题目描述&#xff1a;输入数组长度 n输入数组 a[1...n]输入查找个数m输入查找数字b[1...m]输出 YES or NO 查找有则YES 否则NO 。输入&#xff1a;输入有多组数据。每组输入n&#xff0c;然后输入n个整数&#xff0c;再输入m&#xff0c;然后再输入m个整数(1<m<n<…...

厦门网站搜索优化/如何制作网页

CoOS提供了一个事件标志的机制&#xff0c;用起来跟信号量差不多。 1、CoCreateFlag(),创建一个事件标志 OS_FlagID CoCreateFlag (BOOL bAutoReset,BOOL bInitialState); bAutoReset&#xff0c;为0表示手动复位&#xff0c;为1表示自动复位。 bInitialState&#xff0c…...

怎么建一个网站卖东西/百度权重划分等级

这两天收集到了些象棋的残局棋谱。中国象棋有名的排局之首&#xff1a;《七星聚会》&#xff0c;排法图和解法如下&#xff1a;《七星聚会》解法&#xff1a;&#xff08;红和&#xff09; &#xff11;、炮二平四  卒&#xff15;平&#xff16;   &#xff12;、兵四…...