Pandas 2.1中的新改进和新功能
大家好,Pandas 2.1于2023年8月30日发布,跟随本文一起看看这个版本引入了哪些新内容,以及它如何帮助用户改进Pandas的工作负载,包含了一系列改进和一组新的弃用功能。
Pandas 2.1在Pandas 2.0中引入的PyArrow集成基础上进行了大量改进。本文主要关注了对新功能的支持,这些新功能有望在Pandas 3.0中成为默认功能,下面将详细介绍最重要的改进。
避免在字符串列中使用NumPy对象类型
pandas中的一个主要问题是低效的字符串表示,Pandas团队花了相当长的时间研究了这个问题。第一个基于PyArrow的字符串dtype在pandas 1.3中可用,它有潜力将内存使用量减少约70%并提高性能。
Pandas团队决定引入一个新的配置选项,将所有字符串列存储在PyArrow数组中,不再需要担心转换字符串列,它会自动工作。
可以通过以下方式打开此选项:
pd.options.future.infer_string = True
这个行为将在pandas 3.0中成为默认行为,这意味着字符串列将始终由PyArrow支持,必须安装PyArrow才能使用此选项。
PyArrow与NumPy对象dtype有不同的行为,可能会让人难以详细理解。Pandas实现了用于此选项的字符串dtype,以与NumPy的语义兼容。它的行为与NumPy对象列完全相同。
改进的PyArrow支持
设计者在pandas 2.0中引入了基于PyArrow的DataFrame,其过去几个月的主要目标之一是改进pandas内部的集成。他们的目标是尽可能简化从基于NumPy的DataFrame切换的过程,着重解决了修复性能瓶颈的问题,因为这些问题曾经导致意料之外的减速。
接下来查看一个示例:
import pandas as pd
import numpy as npdf = pd.DataFrame({"foo": np.random.randint(1, 10, (1_000_000, )),"bar": np.random.randint(1, 100, (1_000_000,)),}, dtype="int64[pyarrow]"
)
grouped = df.groupby("foo")
本文的DataFrame有100万行和10个组,现在来比较一下pandas 2.0.3和pandas 2.1的性能:
# pandas 2.0.3
10.6 ms ± 72.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)# pandas 2.1.0
1.91 ms ± 3.16 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
这个特定的例子在新版本上快了5倍,merge是另一个常用的函数,现在速度会更快。
写入时复制(Copy-on-Write)
写入时复制(Copy-on-Write)最初在pandas 1.5.0中引入,并预计将成为pandas 3.0的默认行为,写入时复制已经在pandas 2.0.x上提供了良好的体验。Pandas团队主要专注于修复已知的错误并提高其运行速度,建议在生产环境中使用此模式,现在已经可以看到写入时复制可以将实际的工作流程性能提高50%以上。
弃用setitem类操作中的静默类型转换
一直以来,如果将不兼容的值设置到pandas的列中,pandas会默默地更改该列的数据类型。接下来查看一个示例:
ser = pd.Series([1, 2, 3])0 1
1 2
2 3
dtype: int64
本示例有一个包含整数的系列,结果将是整数数据类型。现在将字母"a"设置到第二行中:
ser.iloc[1] = "a"0 1
1 a
2 3
dtype: object
这会将Series的数据类型更改为object,Object是唯一可以容纳整数和字符串的数据类型,这对许多用户来说是一个很大的问题。Object列会占用大量内存,导致计算无法正常进行、性能下降等许多问题。为了解决这些问题,它还在内部还添加了很多特殊处理,在过去,DataFrame中的静默数据类型更改带来了很大的困扰。现在这种行为已被弃用,并将引发FutureWarning:
FutureWarning: Setting an item of incompatible dtype is deprecated and will raise in a future
error of pandas. Value 'a' has dtype incompatible with int64, please explicitly cast to a
compatible dtype first.ser.iloc[1] = "a"
类似本文示例的操作将在pandas 3.0中引发错误,DataFrame的数据类型在不同操作之间将保持一致。当想要更改数据类型时,则必须明确指定,这会增加一些代码量,但对于后续开发人员来说更容易理解。这个变化会影响所有的数据类型,例如将浮点值设置到整数列中也会引发异常。
升级到新版本
可以使用以下命令安装新的pandas版本:
pip install -U pandas
或者:
mamba install -c conda-forge pandas=2.1
这将在用户的环境中安装新版本。
相关文章:
Pandas 2.1中的新改进和新功能
大家好,Pandas 2.1于2023年8月30日发布,跟随本文一起看看这个版本引入了哪些新内容,以及它如何帮助用户改进Pandas的工作负载,包含了一系列改进和一组新的弃用功能。 Pandas 2.1在Pandas 2.0中引入的PyArrow集成基础上进行了大量…...
c#static(静态)关键字
在C#中,static关键字有多种用途,可以用于声明静态成员、静态类和静态方法。 静态成员:使用static关键字声明的成员属于类,而不是类的实例。静态成员在类第一次被使用之前就被初始化,且只有一个副本存在于内存中&#x…...
GitHub配置SSH key
GitHub配置SSH key Git配置信息并生成密钥 设置用户名和密码 设置用户名 git config --global user.name "用户名" 设置邮箱 git confir --global user.email "邮箱" 生成密钥 ssh-keygen -t rsa -C "邮箱" 查看密钥 到密钥所保存的位置 复…...
文件审计及文件完整性监控
什么是文件审核 对文件服务器中发生的所有事件的检查称为文件审核。这包括监视文件访问,其中包含谁访问了什么文件、何时以及从何处访问的详细信息;对访问最多和修改的文件的分析;成功和失败的文件访问尝试;等等。文件服务器审核过程的主要目标是跟踪在配置的服务器…...
华为智能企业远程办公安全解决方案(1)
华为智能企业远程办公安全解决方案(1) 课程地址方案背景需求分析企业远程办公业务概述企业远程办公安全风险分析企业远程办公环境搭建需求分析 方案设计组网架构设备选型方案亮点 课程地址 本方案相关课程资源已在华为O3社区发布,可按照以下…...
k8s中常用命令总结
文章目录 进入pod容器的命令pod中只有1个用户容器pod中只有2个(含)以上用户容器 yaml中的字段不清楚后面跟什么,通过explain来查看查看pod内指定容器的日志Pod内各个容器的服务端口不能相同资源对象的创建方式一方式二 查看pod的详细信息查看…...
Logistic map混沌掩盖信号
开学接触了一些有关混沌知识的学习,阅读量一些混沌通信的论文,对于混沌掩盖信号以确保加密通信有一定的兴趣。混沌的产生我选用的是logistic map映射产生混沌,主要就是一个递推公式: 对于这样一个式子,可以看出&#x…...
外包干了2个月,技术有明显退步...
先说一下自己的情况,本科生,18年通过校招进入广州某软件公司,干了接近3年的功能测试,今年国庆,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!可我已经在一个企业干了3年的功能测试&…...
顺序表和链表
顺序表和链表 一.线性表二.顺序表三.链表链表的分类单链表的实现双链表的实现 四.顺序表和链表的区别和联系 一.线性表 常见的线性表:顺序表、链表、栈、队列、字符串 线性表在逻辑上是线性结构,也就说是连续的一条直线,但是在物理结构上并不…...
k8s--架构基础--云控制器管理器
具体来说,云控制器管理器允许用户将集群与云服务提供商的 API 进行连接,以获取与云平台相关的信息和资源。通过这种连接,Kubernetes 可以利用云服务提供商的功能和特性,例如虚拟机、负载均衡器、对象存储等。与此同时,…...
OpenAI 更新 ChatGPT:支持图片和语音输入【附点评】
一、消息正文 9月25日消息,近日OpenAI宣布其对话AI系统ChatGPT进行升级,添加了语音输入和图像处理两个新功能。据OpenAI透露,这些新功能将在未来两周内面向ChatGPT Plus付费用户推出,免费用户也将很快可以使用这些新功能。这标志着ChatGPT继续朝着多模态交互的方向发展,为用户提…...
数据结构:堆的简单介绍
目录 堆的介绍:(PriorityQueue) 大根堆:根节点比左右孩子节点大 小根堆:根节点比左右孩子节点小 堆的存储结构: 为什么二叉树在逻辑上用满二叉树结构,而不是普通二叉树呢? 因为如果是普通二叉树会造成资源的浪费编辑 堆的介绍:(PriorityQueue) 堆又称优先级队列,何为优先…...
【LeetCode-中等题】654.最大二叉树
文章目录 题目方法一:递归 题目 方法一:递归 class Solution {int[] num null; public TreeNode constructMaximumBinaryTree(int[] nums) {num nums;return myTree(0,num.length-1);}public TreeNode myTree( int begin , int end){if(begin > end…...
基于微信小程序的刷题考试系统设计与实现(适用于各类考试类、答题类程序)
文章目录 前言系统主要功能:具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding)有保障的售后福利 代码参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计…...
用Java打印长方形、平行四边形 、三角形、菱形、空心菱形
今天复习使用嵌套for来完成一些任务,于是想着打印一些图形来练习 思考感悟 长方形 行数 和 每行的星星数嵌套遍历即可 平行四边形 核心:每行空格数总行数-行数 行数空格数132231 三角形 核心:每行星星数2*当前行数-1 行数星星数1123…...
es6模块化,怎么判断当前文件使用的是es6的模块化还是commenjs的模块化
es6的模块化,文件中的this,指向undefined,不是指向window import.meta - JavaScript | MDN...
Ubuntu 基础配置
源配置 源路径: /etc/apt/sources.list aliyun源 20.04 deb http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse deb http://mirrors.a…...
CISSP学习笔记:人员安全和风险管理概念
第二章 人员安全和风险管理概念 2.1 促进人员安全策略 职责分离: 把关键的、重要的和敏感工作任务分配给若干不同的管理员或高级执行者,防止共谋工作职责:最小特权原则岗位轮换:提供知识冗余,减少伪造、数据更改、偷窃、阴谋破坏和信息滥用的风险&…...
ubuntu18.04 OpenGL开发(显示YUV)
源码参考:https://download.csdn.net/download/weixin_55163060/88382816 安装opengl库 sudo apt install libglu1-mesa-dev freeglut3-dev mesa-common-dev 安装opengl工具包 sudo apt install mesa-utils 检查opengl版本信息(桌面终端执行)…...
React(react18)中组件通信06——redux-toolkit + react-redux
React(react18)中组件通信06——redux-toolkit react-redux 1 前言1.1 redux 和 react-redux1.2 关于redux-toolkit1.2.1 官网1.2.2 为什么要用Redux Toolkit? 1.3 安装 Redux Toolkit1.4 Redux Toolkit相关API 2. 开始例子——官网例子2.1 …...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
【技巧】dify前端源代码修改第一弹-增加tab页
回到目录 【技巧】dify前端源代码修改第一弹-增加tab页 尝试修改dify的前端源代码,在知识库增加一个tab页"HELLO WORLD",完成后的效果如下 [gif01] 1. 前端代码进入调试模式 参考 【部署】win10的wsl环境下启动dify的web前端服务 启动调试…...
