【逆向】(c++)分析pe结构,拉伸pe结构,缩小pe结构
建议大家认认真真写一遍,收获蛮大的,是可以加深对pe结构的理解,尤其是对指针的使用,和对win32的一些宏的定义的理解和使用。
#include <windows.h>
#include <iostream>
#include <string>using namespace std;PIMAGE_DOS_HEADER my_dos=nullptr;//dos头结构
PIMAGE_FILE_HEADER my_file=nullptr;//file结构
PIMAGE_OPTIONAL_HEADER32 my_optional=nullptr;//可选PE头结构
PIMAGE_SECTION_HEADER* my_section=nullptr;//节表结构
void* Before_Stretch_Data = nullptr; //指向拉伸前的内容
void* Stretch_Data = nullptr; //指向拉伸后的内容
void* Shrink_data = nullptr; //指向缩小PE结构的内容//获取
void* Readfile(char* filename)
{unsigned int size;FILE* datafile;void* data;//打开文件if (fopen_s(&datafile, filename, "rb") != 0){cout << "打开文件失败" << endl;return nullptr;}else{//获取文件的大小cout << "打开文件成功!" << endl;fseek(datafile, 0, SEEK_END);size = ftell(datafile);fseek(datafile, 0, SEEK_SET);if (size == -1L){cout << "文件大小判断失败!" << endl;return nullptr;}//申请内存空间把文件内容保存下来data = (void*)malloc(size * sizeof(char));if (fread_s(data, size, sizeof(char), size, datafile) == 0){cout << "写入数据失败!" << endl;return nullptr;}cout << "写入数据成功,成功获取Data!" << endl;return data;}}//分析PE结构
void Analyze_PE(char*& Data, PIMAGE_DOS_HEADER& my_dos, PIMAGE_FILE_HEADER& my_file, PIMAGE_OPTIONAL_HEADER32& my_optional, PIMAGE_SECTION_HEADER*& my_section)
{DWORD* Temp_ptr = (DWORD*)Data;my_dos = (PIMAGE_DOS_HEADER)Temp_ptr;Temp_ptr = (DWORD*)((char*)&Data[my_dos->e_lfanew]);Temp_ptr++;my_file = (PIMAGE_FILE_HEADER)Temp_ptr;Temp_ptr = (DWORD*)((char*)Temp_ptr + 0x14);my_optional = (PIMAGE_OPTIONAL_HEADER)Temp_ptr;Temp_ptr = (DWORD*)((char*)my_optional+my_file->SizeOfOptionalHeader);my_section = (PIMAGE_SECTION_HEADER*)malloc(sizeof(IMAGE_SECTION_HEADER) * my_file->NumberOfSections);for (int i = 0; i < my_file->NumberOfSections; i++){my_section[i] = (PIMAGE_SECTION_HEADER)Temp_ptr;Temp_ptr = (DWORD*)((char*)Temp_ptr + 0x28);}
}//复制节表的内容
//void Copy_Section_Content()
//{
// void* temp_ptr=nullptr;
// for (int i = 0; i < my_file->NumberOfSections; i++)
// {
// temp_ptr = (void*)((char*)Before_Stretch_Data + my_section[i]->PointerToRawData);
//
// }
//}//拉伸PE结构 注意看PIMAGE_XXX_HEADER的定义,它们本就是指向结构体的指针
void Stretch_PE()
{unsigned Memory_Size = 0;Memory_Size = my_optional->SizeOfImage;Stretch_Data = (void*)malloc(sizeof(char) * Memory_Size);memset(Stretch_Data, 0, Memory_Size);void* temp_before_stretch_data_ptr = Before_Stretch_Data;int size_of_dos = 0x40;int size_of_junk = 0x40;int size_of_file = 0x18;unsigned Size_Of_Optional = my_file->SizeOfOptionalHeader;unsigned Size_Of_Section = 0x28;unsigned Size_Of_Header = size_of_dos + size_of_file + size_of_junk + Size_Of_Optional + Size_Of_Section * my_file->NumberOfSections;//还未对齐memcpy_s(Stretch_Data, Memory_Size, Before_Stretch_Data, Size_Of_Header);void* temp_stretch_data = Stretch_Data;//现在计算head头对齐后的大小int Size = Size_Of_Header % my_optional->SectionAlignment;Size_Of_Header = my_optional->SectionAlignment * Size;for (int i = 0; i < my_file->NumberOfSections; i++){temp_stretch_data = (void*)((char*)Stretch_Data+my_section[i]->VirtualAddress);temp_before_stretch_data_ptr = (void*)((char*)Before_Stretch_Data+my_section[i]->PointerToRawData);memcpy_s(temp_stretch_data, my_section[i]->SizeOfRawData, temp_before_stretch_data_ptr, my_section[i]->SizeOfRawData);}cout << "拉伸成功" << endl;
}void Shrink_PE()
{unsigned int Size = 0;Size = my_section[my_file->NumberOfSections - 1]->PointerToRawData + my_section[my_file->NumberOfSections - 1]->SizeOfRawData;Shrink_data = (void*)malloc(Size);//从Stretch_Data缩小//复制Headsmemcpy_s(Shrink_data, my_optional->SizeOfHeaders, Stretch_Data, my_optional->SizeOfHeaders);//复制节void* temp_shrink_data_ptr = Shrink_data;void* temp_stretch_data_ptr = Stretch_Data;for (int i = 0; i < my_file->NumberOfSections; i++){temp_shrink_data_ptr = (void*)((char*)Shrink_data + my_section[i]->PointerToRawData);temp_stretch_data_ptr= (void*)((char*)Stretch_Data + my_section[i]->VirtualAddress);memcpy_s(temp_shrink_data_ptr, my_section[i]->SizeOfRawData, temp_stretch_data_ptr, my_section[i]->SizeOfRawData);}cout << "缩小成功" << endl;return;}int main()
{char filename[100]= "ceshi.exe";Before_Stretch_Data =Readfile(filename);Analyze_PE((char*&)Before_Stretch_Data, my_dos, my_file, my_optional, my_section);cout << my_dos->e_lfanew << endl;cout << my_file->Characteristics << endl;cout << my_optional->ImageBase << endl;cout << my_section[1]->Name<< endl;Stretch_PE();cout << my_section[3]->Name << endl;Shrink_PE();Analyze_PE((char*&)Shrink_data, my_dos, my_file, my_optional, my_section);cout << my_dos->e_lfanew << endl;cout << my_file->Characteristics << endl;cout << my_optional->ImageBase << endl;cout << my_section[1]->Name << endl;return 0;
}
相关文章:
【逆向】(c++)分析pe结构,拉伸pe结构,缩小pe结构
建议大家认认真真写一遍,收获蛮大的,是可以加深对pe结构的理解,尤其是对指针的使用,和对win32的一些宏的定义的理解和使用。 #include <windows.h> #include <iostream> #include <string>using namespace std…...
PyTorch实战:常用卷积神经网络搭建结构速览
目录 前言 常用卷积神经网络 1.AlexNet 2.VGGNet 3.GoogLeNet 4.ResNet 总览 前言 PyTorch可以说是三大主流框架中最适合初学者学习的了,相较于其他主流框架,PyTorch的简单易用性使其成为初学者们的首选。这样我想要强调的一点是,框架…...
排序算法之【快速排序】
📙作者简介: 清水加冰,目前大二在读,正在学习C/C、Python、操作系统、数据库等。 📘相关专栏:C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 👍…...
声明式调用 —— SpringCloud OpenFeign
Feign 简介 Spring Cloud Feign 是一个 HTTP 请求调用的轻量级框架,可以以 Java 接口注解的方式调用 HTTP 请求,而不用通过封装 HTTP 请求报文的方式直接调用 Feign 通过处理注解,将请求模板化,当实际调用的时候传入参数&#x…...
LuatOS-SOC接口文档(air780E)-- fota - 底层固件升级
fota.init(storge_location, len, param1)# 初始化fota流程 参数 传入值类型 解释 int/string fota数据存储的起始位置 如果是int,则是由芯片平台具体判断 如果是string,则存储在文件系统中 如果为nil,则由底层决定存储位置 int 数据存…...
第二章 Introduction
Armv8.4 架构引入了在安全状态下的虚拟化扩展。Arm SMMU v3.2 架构 [1] 增加了对安全流的第二阶段翻译的支持,以补充 Armv8.4 PE 中的安全 EL2 翻译体制。这些架构特性使得可以在安全状态下将彼此不信任的软件组件隔离开来。隔离是实现最小权限原则的机制࿱…...
WebGL 渲染三维图形作为纹理贴到另一个三维物体表面
目录 渲染到纹理 帧缓冲区对象和渲染缓冲区对象 帧缓冲区对象 帧缓冲区对象的结构 如何实现渲染到纹理 示例程序(FramebufferObject.js) 创建帧缓冲区对象(gl.createFramebuffer()) gl.createFra…...
国庆《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书行将售罄
国庆《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书行将售罄 国庆《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书行将售罄...
Source Insight 工具栏图标功能介绍
这篇文章并不介绍 Source Insight 的具体使用方法,这类教程网上有很多,这里只分析 Souce Insight 工具栏图标的功能。 文章目录 Source Insight 简介Souce Insight 工具栏文件操作新建(CtrlN)打开(CtrlO)保…...
模板与泛型编程-函数模板
本专栏由于缺少函数模板专题,我本以为这个不用讲解,但由于某些同学基础比较薄弱,特地在此补充一下。 函数模板的定义一般都在头文件中。 一、如何定义一个模板函数 下面是一个求和函数 template<typename T,typename U> auto Add(T a, U b) {return a + b; }int...
了解ActiveMQ、RabbitMQ、RocketMQ和Kafka的特点
ActiveMQ ActiveMQ是一种基于JMS(Java消息服务)规范的消息中间件,由Apache基金会开发和维护 核心组件和特点: Broker(代理):ActiveMQ的核心组件是Broker,它负责接收、存储和路由消息…...
第七章 用户和组管理
7.1 Linux中的用户和组的分类 用户类别 超级用户(0) root 系统用户(1-999) 一般用户(1000-60000) 组类别 管理组 root 基本组(默认组/主组) 附加组(额外组) 7.2 用户管理 7.2.1 添加新用户 语法 useradd 【…...
给奶牛做直播之三
一、前言 上一篇给牛奶做直播之二 主要讲用RTMP搭建点播服务器,整了半天直播还没上场,今天不讲太多理论的玩意,奶牛今天放假了也不出场,就由本人亲自上场来个直播首秀,见下图,如果有兴趣的话࿰…...
【Java 进阶篇】MySQL 数据控制语言(DCL):管理用户权限
MySQL 是一个强大的关系型数据库管理系统,提供了丰富的功能和选项来管理数据库和用户。数据库管理员(DBA)通常使用数据控制语言(Data Control Language,简称 DCL)来管理用户的权限和访问。 本文将详细介绍…...
WPF 03
staticResource和dynamicResource的区别 首先看一个案例 MainWindow.xaml <Window x:Class"WpfDay03.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml&quo…...
Android 使用kotlin+注解+反射+泛型实现MVP架构
一,MVP模式的定义 ①Model:用于存储数据。它负责处理领域逻辑以及与数据库或网络层的通信。 ②View:UI层,提供数据可视化界面,并跟踪用户的操作,以便通知presenter。 ③Presenter:从Model层获…...
数据结构——堆(C语言)
本篇会解决一下几个问题: 1.堆是什么? 2.如何形成一个堆? 3.堆的应用场景 堆是什么? 堆总是一颗完全二叉树堆的某个节点总是不大于或不小于父亲节点 如图,在小堆中,父亲节点总是小于孩子节点的。 如图&a…...
B058-SpringBoot
目录 springboot概念与作用入门案例springboot运行方式热部署配置文件Profile多环境支持整合测试-springboot-testSpringboot-web1.返回json数据2.返回页面(模板技术)thymeleaf1.导入thymeleaf依赖2.模板文件3.controller4.启动类 SSM整合1.导包2.项目目…...
龙迅LT9611UXC 2PORT MIPICSI/DSI转HDMI(2.0)转换器+音频,内置MCU
龙迅LT9611UXC 1.描述: LT9611UXC是一个高性能的MIPI DSI/CSI到HDMI2.0转换器。MIPI DSI/CSI输入具有可配置的单 端口或双端口,1高速时钟通道和1~4高速数据通道,最大2Gbps/通道,可支持高达16Gbps的总带 宽。LT9611UXC支持突发…...
STM32存储左右互搏 I2C总线读写FRAM MB85RC1M
STM32存储左右互搏 I2C总线读写FRAM MB85RC1M 在较低容量存储领域,除了EEPROM的使用,还有铁电存储器FRAM的使用,相对于EEPROM, 同样是非易失性存储单元,FRAM支持更高的访问速度, 其主要优点为没有EEPROM持续写操作跨页…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
