当前位置: 首页 > news >正文

ACGAN

CGAN通过在生成器和判别器中均使用标签信息进行训练,不仅能产生特定标签的数据,还能够提高生成数据的质量;SGAN(Semi-Supervised GAN)通过使判别器/分类器重建标签信息来提高生成数据的质量。既然这两种思路都可以提高生成数据的质量,于是ACGAN综合了以上两种思路,既使用标签信息进行训练,同时也重建标签信息,结合CGAN和SGAN的优点,从而进一步提升生成样本的质量,并且还能根据指定的标签相应的样本。

1. ACGAN的网络结构为:

ACGAN的网络结构框图

        生成器输入包含C_vector和Noise_data两个部分,其中C_vector为训练数据标签信息的One-hot编码张量,其形状为:(batch_size, num_class) ;Noise_data的形状为:(batch_size, latent_dim)。然后将两者进行拼接,拼接完成后,得到的输入张量为:(batch_size, num_class + latent_dim)。生成器的的输出张量为:(batch_size, channel, Height, Width)。

        判别器输入为:(batch_size, channel, Height, Width); 判别的器的输出为两部分,一部分是源数据真假的判断,形状为:(batch_size, 1),一部分是输入数据的分类结果,形状为:(batch_size, class_num)。因此判别器的最后一层有两个并列的全连接层,分别得到这两部分的输出结果,即判别器的输出有两个张量(真假判断张量和分类结果张量)。

2. ACGAN的损失函数:

        对于判别器而言,既希望分类正确,又希望能正确分辨数据的真假;对于生成器而言,也希望能够分类正确,当时希望判别器不能正确分辨假数据。

D_real, C_real = Discriminator( real_imgs)         # real_img 为输入的真实训练图片

D_real_loss = torch.nn.BCELoss(D_real, Y_real)          #  Y_real为真实数据的标签,真数据都为-1,假数据都为+1

C_real_loss = torch.nn.CrossEntropyLoss(C_real, Y_vec)        # Y_vec为训练数据One-hot编码的标签张量

gen_imgs = Generator(noise, Y_vec)

D_fake, C_fake = Discriminator(gen_imgs)

D_fake_loss = torch.nn.BCELoss(D_fake, Y_fake)

C_fake_loss = torch.nn.CrossEntropyLoss(C_fake, Y_vec)

D_loss = D_real_loss + C_real_loss + D_fake_loss + C_fake_loss

生成器的损失函数:  

gen_imgs = Generator(noise, Y_vec)

D_fake, C_fake = Discriminator(gen_imgs)

D_fake_loss = torch.nn.BCELoss(D_fake, Y_real)

C_fake_loss = torch.nn.CrossEntropyLoss(C_fake, Y_vec)

G_loss = D_fake_loss + C_fake_loss

class Discriminator(nn.Module):  # 定义判别器def __init__(self, img_size=(64, 64), num_classes=2):  # 初始化方法super(Discriminator, self).__init__()  # 继承初始化方法self.img_size = img_size  # 图片尺寸,默认为(64.64)三通道图片self.num_classes = num_classes  # 类别数self.conv1 = nn.Conv2d(3, 128, 4, 2, 1)  # conv操作self.conv2 = nn.Conv2d(128, 256, 4, 2, 1)  # conv操作self.bn2 = nn.BatchNorm2d(256)  # bn操作self.conv3 = nn.Conv2d(256, 512, 4, 2, 1)  # conv操作self.bn3 = nn.BatchNorm2d(512)  # bn操作self.conv4 = nn.Conv2d(512, 1024, 4, 2, 1)  # conv操作self.bn4 = nn.BatchNorm2d(1024)  # bn操作self.leakyrelu = nn.LeakyReLU(0.2)  # leakyrelu激活函数self.linear1 = nn.Linear(int(1024 * (self.img_size[0] / 2 ** 4) * (self.img_size[1] / 2 ** 4)), 1)  # linear映射self.linear2 = nn.Linear(int(1024 * (self.img_size[0] / 2 ** 4) * (self.img_size[1] / 2 ** 4)),self.num_classes)  # linear映射self.sigmoid = nn.Sigmoid()  # sigmoid激活函数self.softmax = nn.Softmax(dim=1)  # softmax激活函数self._init_weitghts()  # 模型权重初始化def _init_weitghts(self):  # 定义模型权重初始化方法for m in self.modules():  # 遍历模型结构if isinstance(m, nn.Conv2d):  # 如果当前结构是convnn.init.normal_(m.weight, 0, 0.02)  # w采用正态分布初始化nn.init.constant_(m.bias, 0)  # b设为0elif isinstance(m, nn.BatchNorm2d):  # 如果当前结构是bnnn.init.constant_(m.weight, 1)  # w设为1nn.init.constant_(m.bias, 0)  # b设为0elif isinstance(m, nn.Linear):  # 如果当前结构是linearnn.init.normal_(m.weight, 0, 0.02)  # w采用正态分布初始化nn.init.constant_(m.bias, 0)  # b设为0def forward(self, x):  # 前传函数x = self.conv1(x)  # conv,(n,3,64,64)-->(n,128,32,32)x = self.leakyrelu(x)  # leakyrelu激活函数x = self.conv2(x)  # conv,(n,128,32,32)-->(n,256,16,16)x = self.bn2(x)  # bn操作x = self.leakyrelu(x)  # leakyrelu激活函数x = self.conv3(x)  # conv,(n,256,16,16)-->(n,512,8,8)x = self.bn3(x)  # bn操作x = self.leakyrelu(x)  # leakyrelu激活函数x = self.conv4(x)  # conv,(n,512,8,8)-->(n,1024,4,4)x = self.bn4(x)  # bn操作x = self.leakyrelu(x)  # leakyrelu激活函数x = torch.flatten(x, 1)  # 三维特征压缩至一位特征向量,(n,1024,4,4)-->(n,1024*4*4)# 根据特征向量x,计算图片真假的得分validity = self.linear1(x)  # linear映射,(n,1024*4*4)-->(n,1)validity = self.sigmoid(validity)  # sigmoid激活函数,将输出压缩至(0,1)# 根据特征向量x,计算图片分类的标签label = self.linear2(x)  # linear映射,(n,1024*4*4)-->(n,2)label = self.softmax(label)  # softmax激活函数,将输出压缩至(0,1)return (validity, label)  # 返回(图像真假的得分,图片分类的标签)class Generator(nn.Module):  # 定义生成器def __init__(self, img_size=(64, 64), num_classes=2, latent_dim=100):  # 初始化方法super(Generator, self).__init__()  # 继承初始化方法self.img_size = img_size  # 图片尺寸,默认为(64.64)三通道图片self.num_classes = num_classes  # 类别数self.latent_dim = latent_dim  # 输入噪声长度,默认为100self.linear = nn.Linear(self.latent_dim, 4 * 4 * 1024)  # linear映射self.bn0 = nn.BatchNorm2d(1024)  # bn操作self.deconv1 = nn.ConvTranspose2d(1024, 512, 4, 2, 1)  # transconv操作self.bn1 = nn.BatchNorm2d(512)  # bn操作self.deconv2 = nn.ConvTranspose2d(512, 256, 4, 2, 1)  # transconv操作self.bn2 = nn.BatchNorm2d(256)  # bn操作self.deconv3 = nn.ConvTranspose2d(256, 128, 4, 2, 1)  # transconv操作self.bn3 = nn.BatchNorm2d(128)  # bn操作self.deconv4 = nn.ConvTranspose2d(128, 3, 4, 2, 1)  # transconv操作self.relu = nn.ReLU(inplace=True)  # relu激活函数self.tanh = nn.Tanh()  # tanh激活函数self.embedding = nn.Embedding(self.num_classes, self.latent_dim)  # embedding操作self._init_weitghts()  # 模型权重初始化def _init_weitghts(self):  # 定义模型权重初始化方法for m in self.modules():  # 遍历模型结构if isinstance(m, nn.ConvTranspose2d):  # 如果当前结构是transconvnn.init.normal_(m.weight, 0, 0.02)  # w采用正态分布初始化nn.init.constant_(m.bias, 0)  # b设为0elif isinstance(m, nn.BatchNorm2d):  # 如果当前结构是bnnn.init.constant_(m.weight, 1)  # w设为1nn.init.constant_(m.bias, 0)  # b设为0elif isinstance(m, nn.Linear):  # 如果当前结构是linearnn.init.normal_(m.weight, 0, 0.02)  # w采用正态分布初始化nn.init.constant_(m.bias, 0)  # b设为0def forward(self, input: tuple):  # 前传函数noise, label = input  # 从输入的元组中获取噪声向量和标签信息label = self.embedding(label)  # 标签信息经过embedding操作,变成与噪声向量尺寸相同的稠密向量z = torch.multiply(noise, label)  # 噪声向量与标签稠密向量相乘,得到带有标签信息的噪声向量z = self.linear(z)  # linear映射,(n,100)-->(n,1024*4*4)z = z.view((-1, 1024, int(self.img_size[0] / 2 ** 4),int(self.img_size[1] / 2 ** 4)))  # 一维特征向量扩展至三维特征,(n,1024*4*4)-->(n,1024,4,4)z = self.bn0(z)  # bn操作z = self.relu(z)  # relu激活函数z = self.deconv1(z)  # trainsconv操作,(n,1024,4,4)-->(n,512,8,8)z = self.bn1(z)  # bn操作z = self.relu(z)  # relu激活函数z = self.deconv2(z)  # trainsconv操作,(n,512,8,8)-->(n,256,16,16)z = self.bn2(z)  # bn操作z = self.relu(z)  # relu激活函数z = self.deconv3(z)  # trainsconv操作,(n,256,16,16)-->(n,128,32,32)z = self.bn3(z)  # bn操作z = self.relu(z)  # relu激活函数z = self.deconv4(z)  # trainsconv操作,(n,128,32,32)-->(n,3,64,64)z = self.tanh(z)  # tanh激活函数,将输出压缩至(-1,1)return z  # 返回生成图像

 

相关文章:

ACGAN

CGAN通过在生成器和判别器中均使用标签信息进行训练,不仅能产生特定标签的数据,还能够提高生成数据的质量;SGAN(Semi-Supervised GAN)通过使判别器/分类器重建标签信息来提高生成数据的质量。既然这两种思路都可以提高生成数据的质…...

模块化CSS

1、什么是模块化CSS 模块化CSS是一种将CSS样式表的规则和样式定义封装到模块或组件级别的方法,以便于更好地管理、维护和组织样式代码。这种方法通过将样式与特定的HTML元素或组件相关联,提供了一种更具可维护性、可复用性和隔离性的方式来处理样式。简单…...

意大利储能公司【Energy Dome】完成1500万欧元融资

来源:猛兽财经 作者:猛兽财经 猛兽财经获悉,总部位于意大利米兰的储能公司Energy Dome今日宣布已完成1500万欧元B轮融资。 本轮融资完成后,Energy Dome的融资总额已经达到了5500万欧元,本轮融资的参与者包括阿曼创新发…...

【Java 进阶篇】JDBC Connection详解:连接到数据库的关键

在Java中,要与数据库进行交互,需要使用Java数据库连接(JDBC)。JDBC允许您连接到不同类型的数据库,并执行SQL查询、插入、更新和删除操作。在JDBC中,连接数据库是一个重要的步骤,而Connection对象…...

vue-cli项目打包体积太大,服务器网速也拉胯(100kb/s),客户打开网站需要等十几秒!!! 尝试cdn优化方案

一、首先用插件webpack-bundle-analyzer查看自己各个包的体积 插件用法参考之前博客 vue-cli项目中,使用webpack-bundle-analyzer进行模块分析,查看各个模块的体积,方便后期代码优化 二、发现有几个插件体积较大,有改成CDN引用的…...

【优秀学员统计】python实现-附ChatGPT解析

1.题目 优秀学员统计 知识点排序统计编程基础 时间限制: 1s 空间限制: 256MB 限定语言:不限 题目描述: 公司某部门软件教导团正在组织新员工每日打卡学习活动,他们开展这项学习活动已经一个月了,所以想统计下这个月优秀的打卡员工。每个员工会对应一个id,每天的打卡记录记录…...

餐饮外卖配送小程序商城的作用是什么?

餐饮是支撑市场的主要行业之一,其市场规模很大,从业商家从大到小不计其数,对众商家来说,无论门店大小都希望不断生意增长,但在实际发展中却会面对不少痛点; 餐饮很适合线上经营,无论第三方外卖…...

【QT】使用toBase64方法将.txt文件的明文变为非明文(类似加密)

目录 0.环境 1.背景 2.详细代码 2.1 .h主要代码 2.2 .cpp主要代码,主要实现上述的四个方法 0.环境 windows 11 64位 Qt Creator 4.13.1 1.背景 项目需求:我们项目中有配置文件(类似.txt,但不是这个格式,本文以…...

《QDebug 2023年9月》

一、Qt Widgets 问题交流 1.Qt 程序在 Windows 上以管理员权限运行时无法响应拖放(Drop) 无论是 Widget 还是 QML 程序,以管理员权限运行时,都无法响应拖放操作。可以右键管理员权限打开 Qt Creator,然后丢个文本文件…...

C++使用高斯模糊处理图像

C使用高斯模糊处理图像 cv::GaussianBlur 是 OpenCV 中用于对图像进行高斯模糊处理的函数。高斯模糊是一种常用的图像滤波方法,它可以减少图像中的噪声,并平滑图像以降低细节级别。 void cv::GaussianBlur(const cv::Mat& src, cv::Mat& dst, …...

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)

多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络) 目录 多维时序 | MATLAB实现PSO-BP多变量时间序列预测(粒子群优化BP神经网络)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现PSO-BP粒子群优化BP神经网络多变量时间序列预测&#xff…...

LeetCode 283. 移动零

移动零 问题描述 LeetCode 283. 移动零 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意,必须在不复制数组的情况下原地对数组进行操作。 解决思路 为了将所有 0 移动到数组的末尾&#…...

【数据结构】选择排序 堆排序(二)

目录 一,选择排序 1,基本思想 2, 基本思路 3,思路实现 二,堆排序 1,直接选择排序的特性总结: 2,思路实现 3,源代码 最后祝大家国庆快乐! 一&#xf…...

opencv实现目标跟踪及视频转存

创建跟踪器 def createTypeTracker(trackerType): 读取视频第一帧,选择跟踪的目标 读第一帧。 ok, frame video.read() 选择边界框 bbox cv2.selectROI(frame, False) 初始化跟踪器 tracker_type ‘MIL’ tracker createTypeTracker(tracker_type) 用第一…...

R | R及Rstudio安装、运行环境变量及RStudio配置

R | R及Rstudio安装、运行环境变量及RStudio配置 一、介绍1.1 R介绍1.2 RStudio介绍 二、R安装2.1 演示电脑系统2.2 R下载2.3 R安装2.4 R语言运行环境设置(环境变量)2.4.1 目的2.4.2 R-CMD测试2.4.3 设置环境变量 2.5 R安装测试 三、RStudio安装3.1 RStu…...

智能回答机器人的“智能”体现在哪里?

人工智能的广泛应用已经成为当今社会科技发展的趋势之一。通过人工智能技术,我们可以在不同领域中实现自动化、智能化和高效化,从而大大提升生产和生活效率。智能回答机器人的出现和使用便能很好的证明这一点。今天我们就来探讨一下智能会打机器人的“智…...

多网卡场景数据包接收时ip匹配规则

多网卡场景数据包接收时ip匹配规则 mac地址匹配规则 接收数据包时数据包中的目的mac地址匹配接收网卡的mac地址后,数据包才会继续被传递到网络层处理 ip地址匹配规则 图1: 参见:https://zhuanlan.zhihu.com/p/529160026?utm_id0 图2&am…...

安防视频平台EasyCVR视频调阅全屏播放显示异常是什么原因?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…...

1.5.C++项目:仿muduo库实现并发服务器之socket模块的设计

项目完整版在: 一、socket模块:套接字模块 二、提供的功能 Socket模块是对套接字操作封装的一个模块,主要实现的socket的各项操作。 socket 模块:套接字的功能 创建套接字 绑定地址信息 开始监听 向服务器发起连接 获取新连接 …...

whisper+剪映+chatgpt实现实时语音对话功能

whisper将录音文件转成文字---chatgpt回答---剪映tts将文字转成语言。 GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak Supervision whisper剪映chatgpt实现实时语音对话功能_哔哩哔哩_bilibili...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...