基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码、数据、文献
💥1 概述
由于各种肿瘤类型,在磁共振图像(MRI)中准确分割脑肿瘤是一项艰巨的任务。使用来自多模态MRI的信息和特征,包括结构MRI和来自扩散张量成像(DTI)的各向同性(p)和各向异性(q)分量,可以对大脑图像进行更准确的分析。方法:我们提出了一种新的基于3D超体素的学习方法,用于分割多模态MRI脑图像(常规MRI和DTI)中的肿瘤。超体素是使用多模态 MRI 数据集中的信息生成的。对于每个超体素,提取各种特征,包括文本描述符的直方图,使用一组具有不同大小和方向的Gabor滤波器计算,以及一阶强度统计特征。这些特征被输入到随机森林(RF)分类器中,将每个超体素分类为肿瘤核心,水肿或健康脑组织。结果:该方法在两个数据集上进行评估:1)我们的临床数据集:11张患者的多模态图像和2)BRATS 2013临床数据集:30张多模态图像。对于我们的临床数据集,使用多模态MRI检测肿瘤(包括肿瘤核心和水肿)的平均灵敏度为86%,平衡错误率(BER)为7%;而自动肿瘤分割与地面真相的骰子评分为 0.84。BRATS 2013数据集的相应结果分别为96%、2%和0.89。结论:该方法在脑肿瘤的分割中显示出有希望的结果。从多模态MRI图像中添加特征可以大大提高分割精度。该方法与所有肿瘤等级的专家描述非常匹配,从而提供了一种更快、更可重复的脑肿瘤检测和描述方法,以帮助患者管理。
📚2 运行结果




部分代码:
%% Save
% Save the supervoxel map volumes into MAT file
Output_Name = fullfile(Output_Path,['MRI_SLIC_Labels_Size',num2str(voxel_X),...'x',num2str(voxel_Y),'x',num2str(voxel_Z),'_Compactness_0',Cmpt,'_Case_',num2str(Case),'.mat']);
save (Output_Name,'SLIC_Labels_3D');%% Show the output
Slice = round(size(I,3)/2);
Image_2D = I(:,:,Slice,1);
Label1 = Label(:,:,Slice,1);
k1 = unique(Label1);
Label2 = zeros(size(Image_2D));
BW = zeros(size(Image_2D));
BW = logical(BW);
for idx = 1:numel(k1) % 1:kc_k = k1(idx);L = zeros(size(Image_2D));L(Label1==c_k)=1;BW2 = L;BW_temp = edge(BW2);Label2 = Label2+double(BW2)*c_k;BW = BW|BW_temp;
endfor P = 1:numel(ProtocolList)Image_2D = I(:,:,Slice,P);BW_Color = repmat(Image_2D,1,1,3);BW_Color = uint8(BW_Color*255);for layer = 1:2tempLayer = BW_Color(:,:,layer);tempLayer(BW) = 255;BW_Color(:,:,layer) = tempLayer;endtempLayer = BW_Color(:,:,3);tempLayer(BW) = 0;BW_Color(:,:,3) = tempLayer;figure(P);subplot(1,2,1); imshow(Image_2D,[])title(['Original: ',ProtocolList{P}])subplot(1,2,2); imshow(BW_Color,[])title('SuperVoxel')
end
%% Save
% Save the supervoxel map volumes into MAT file
Output_Name = fullfile(Output_Path,['MRI_SLIC_Labels_Size',num2str(voxel_X),...
'x',num2str(voxel_Y),'x',num2str(voxel_Z),'_Compactness_0',Cmpt,'_Case_',num2str(Case),'.mat']);
save (Output_Name,'SLIC_Labels_3D');
%% Show the output
Slice = round(size(I,3)/2);
Image_2D = I(:,:,Slice,1);
Label1 = Label(:,:,Slice,1);
k1 = unique(Label1);
Label2 = zeros(size(Image_2D));
BW = zeros(size(Image_2D));
BW = logical(BW);
for idx = 1:numel(k1) % 1:k
c_k = k1(idx);
L = zeros(size(Image_2D));
L(Label1==c_k)=1;
BW2 = L;
BW_temp = edge(BW2);
Label2 = Label2+double(BW2)*c_k;
BW = BW|BW_temp;
end
for P = 1:numel(ProtocolList)
Image_2D = I(:,:,Slice,P);
BW_Color = repmat(Image_2D,1,1,3);
BW_Color = uint8(BW_Color*255);
for layer = 1:2
tempLayer = BW_Color(:,:,layer);
tempLayer(BW) = 255;
BW_Color(:,:,layer) = tempLayer;
end
tempLayer = BW_Color(:,:,3);
tempLayer(BW) = 0;
BW_Color(:,:,3) = tempLayer;
figure(P);
subplot(1,2,1); imshow(Image_2D,[])
title(['Original: ',ProtocolList{P}])
subplot(1,2,2); imshow(BW_Color,[])
title('SuperVoxel')
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献
相关文章:
基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
【RocketMQ】(八)Rebalance负载均衡
消费者负载均衡,是指为消费组下的每个消费者分配订阅主题下的消费队列,分配了消费队列消费者就可以知道去消费哪个消费队列上面的消息,这里针对集群模式,因为广播模式,所有的消息队列可以被消费组下的每个消费者消费不…...
线性筛和埃氏筛
线性筛: #define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<cstdio> #include<cstdlib> #include<string> #include<cstring> #include<cmath> #include<ctime> #include<algorithm> #include<ut…...
【Java 进阶篇】JDBC ResultSet 类详解
在Java应用程序中,与数据库交互通常涉及执行SQL查询以检索数据。一旦执行查询,您将获得一个ResultSet对象,该对象包含查询结果的数据。本文将深入介绍ResultSet类,它是Java JDBC编程中的一个核心类,用于处理查询结果。…...
Centos7常用服务脚本(.service)
Centos7常用服务脚本(.service) 注意:[Service]中配置路径必须使用绝对路径。 启停: systemctl { start | stop | restart | reload } xxx.service 自启动: systemctl { enable | disable } xxx.service nginx.se…...
MySQL 视图View的SQL语法和更新(视图篇 二)
视图语法基本操作 创建 -- [ ]表示可选 create [or replace] view 视图名称[(列名列表)] as select语句 [ with [cascaded | local ] check option ]; 添加(虽然视图是虚拟表,但是向视图操作的数据实际上会影响到实际关联的表数据) -- 视图添…...
38 翻转二叉树
翻转二叉树 理解题意,翻转即每个结点的左右子树翻转/对调题解1 递归——自下而上题解2 迭代——自上而下 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 提示: 树中节点数目范围在 [0, 100] 内-100 < Node.…...
数据结构-快速排序-C语言实现
引言:快速排序作为一种非常经典且高效的排序算法,无论是工作还是面试中广泛用到,作为一种分治思想,需要熟悉递归思想。下面来讲讲快速排序的实现和改进。 老规矩,先用图解来理解一下:(这里使用快…...
玩客云Armbian_23.08.0-trunk_Onecloud_bookworm_edge_6.4.14.burn配置
固定IP # interface file auto-generated by buildrootauto lo iface lo inet loopback// 上面是默认的内容,下面是新增的内容,上下之间需要一个空行隔开 // 接口顶格写,属性的前面有一个tab的缩进 # The primary network interfaceauto eth0 iface eth0 inet staticaddress 1…...
Nginx查找耗时的接口
Nginx查找耗时的接口 # grep 是筛选的域名 awk中的$5是判断的状态码 sort中的15是指的upstream_response_time 当然也可以统计request_time的时间cat access.log | grep zhhll.icu | awk $5 200{print $0} | sort -k 15 -n -r | head -10 https://zhhll.icu/2021/linux/实…...
C++ Primer 一 变量和基本类型
本章讲解C内置的数据类型(如:字符、整型、浮点数等)和自定义数据类型的机制。下一章讲解C标准库里面定义的更加复杂的数据类型,比如可变长字符串和向量等。 1.基本内置类型 C内置的基本类型包括:算术类型和空类型。算…...
实体行业数字化转型怎么做?线上线下相结合的新零售体系怎么做?
如今,实体行业想要取得收入增长,只做线下业务或者只做线上业务,在当前的市场环境中是难以长久生存的,因此一定要线上线下相结合,将流量运作与线下转化进行充分结合,才能更好地发挥实体优势,带来…...
JAVA面经整理(5)
创建线程池不是说现用先创建,而是要是可以复用线程池中的线程,就很好地避免了大量用户态和内核态的交互,不需要频繁的创建和销毁线程 一)什么是池化技术?什么是线程池? 1)池化技术是提前准备好一些资源,在…...
【牛客网-面试必刷TOP101】二分查找题目
目录 二维数组中的查找_牛客题霸_牛客网 (nowcoder.com) 寻找峰值_牛客题霸_牛客网 (nowcoder.com) 数组中的逆序对_牛客题霸_牛客网 (nowcoder.com) 旋转数组的最小数字_牛客题霸_牛客网 (nowcoder.com) 二维数组中的查找_牛客题霸_牛客网 (nowcoder.com) 题意:…...
【QT】自定义组件ui类添加到主ui界面方法
1.添加自定义组件到项目中 add new选择如下 写好类方法,确定即可 2.将新创建的ui类加入到主ui界面 选中新创建ui类的父类空块,右键选择提升为 选择并添加新创建的类...
FFmpeg 多图片合成视频带字幕和音乐+特效(淡入淡出,圆圈黑色淡出)
FFmpeg 多图片合成视频带字幕和音乐+特效(淡入淡出,圆圈黑色淡出) 效果图1. 报错及解决2. xfade、xfade_opeccl 特效切换3. ffmpeg命令行详解4. 源码4.1 auto.bash4.2 geneFade.py4.3 python moviepy合并视频及音频按照(视频长度截取对应的音频在合并)4.4 命令行记录参考这…...
上网Tips: Linux截取动态效果图工具_byzanz
链接1 链接2 安装: sudo apt-get install byzanz 查看指令 说明 byzanz-record --help日常操作 xwininfo点击 待录制窗口 左上角 byzanz-record -x 72 -y 64 -w 1848 -h 893 -d 10 --delay5 -c /home/xixi/myGIF/test.gif小工具 获取鼠标坐标 xdotool getm…...
下载盗版网站视频并将.ts视频文件合并
. 1.分析视频请求123 2.数据获取和拼接 1.分析视频请求 1 通过抓包观察我们发现视频是由.ts文件拼接成的每一个.ts文件代表一小段2 通过观察0.ts和1.ts的url我们发现他们只有最后一段不同我们网上找到url获取的包3 我们发现index.m3u8中储存着所有的.ts文件名在拼接上前面固定…...
ElasticSearch - 基于 拼音分词器 和 IK分词器 模拟实现“百度”搜索框自动补全功能
目录 一、自动补全 1.1、效果说明 1.2、安装拼音分词器 1.3、自定义分词器 1.3.1、为什么要自定义分词器 1.3.2、分词器的构成 1.3.3、自定义分词器 1.3.4、面临的问题和解决办法 问题 解决方案 1.4、completion suggester 查询 1.4.1、基本概念和语法 1.4.2、示例…...
【kubernetes】kubernetes中的调度
1 调度过程 调度的本来含义是指决定某个任务交给某人来做的过程,kubernetes中的调度是指决定Pod在哪个Node上运行。 k8s的调度分为2个过程: 预选:去掉不满足条件的节点优选:对剩下符合条件的节点按照一些策略进行排序ÿ…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

