当前位置: 首页 > news >正文

大语言模型之十三 LLama2中文推理

在《大语言模型之十二 SentencePiece扩充LLama2中文词汇》一文中已经扩充好了中文词汇表,接下来就是使用整理的中文语料对模型进行预训练了。这里先跳过预训练环节。先试用已经训练好的模型,看看如何推理。

合并模型

这一步骤会合并LoRA权重,生成全量模型权重。此处可以选择输出PyTorch版本权重(.pth文件)或者输出HuggingFace版本权重(.bin文件)。执行以下命令:

$ python scripts/merge_llama2_with_chinese_lora_low_mem.py \--base_model path_to_original_llama2_hf_dir \--lora_model path_to_chinese_llama2_or_alpaca2_lora \--output_type huggingface \--output_dir path_to_output_dir 

参数说明:

  • –base_model:存放HF格式的Llama-2模型权重和配置文件的目录,这可以在《大语言模型之十二 SentencePiece扩充LLama2中文词汇》的1.下载原版LLama-2模型小节找到如何将原始meta的LlaMA-2模型转为Huggingface的格式。
  • –lora_model:中文LLaMA-2/Alpaca-2 LoRA解压后文件所在目录,也可使用🤗Model Hub模型调用名称(会自动下载),这里使用Chinese-LLaMA-Alpaca-2给出的预训练好的7B模型。
  • –output_type:指定输出格式,可为pth或huggingface。若不指定,默认为huggingface
  • –output_dir:指定保存全量模型权重的目录,默认为./
  • (可选)–verbose:显示合并过程中的详细信息
    请添加图片描述
    转换好格式之后,内容如下(时间戳为11:28的即为转换生成文件):
    请添加图片描述
    其中的ggml开头的事量化文件是用于模型推理。

推理

在attn_and_long_ctx_patches.py实现了基于NTK的自适应上下文适配方法,其中基于transformers的推理脚本。

  • 当上下文小于4K时,默认关闭,因为原生的效果更好
  • 大于4K时开启NTK,AUTO_COEFF默认为1.0
    以下是不同AUTO_COEFF下,在不同上下文长度上的PPL变化(越低越好),供使用参考。
    对NTK方法熟悉的用户可直接修改代码中的ALPHA取值。
  • 12K以下:几乎和原生4K的PPL没有显著差异
  • 12K-16K:开始存在一定损失,大约是3比特量化级别的效果
  • 18K+:存在较大损失,大约是2比特量化级别效果,20K+不可用
    以上结果仅供参考,应在实际场景中测试调整AUTO_COEFF或者ALPHA取值。

使用llama.cpp推理

Step 1: 克隆和编译llama.cpp

  1. (可选)如果已下载旧版仓库,建议git pull拉取最新代码,并执行make clean进行清理
  2. 拉取最新版llama.cpp仓库代码
$ git clone https://github.com/ggerganov/llama.cpp
  1. 对llama.cpp项目进行编译,生成./main(用于推理)和./quantize(用于量化)二进制文件。
$ make

Step 2: 生成量化版本模型
目前llama.cpp已支持.pth文件以及huggingface格式.bin的转换。将完整模型权重转换为GGML的FP16格式,生成文件路径为zh-models/7B/ggml-model-f16.gguf。进一步对FP16模型进行4-bit量化,生成量化模型文件路径为zh-models/7B/ggml-model-q4_0.gguf。不同量化方法的性能对比见本Wiki最后部分。

python3 convert.py ../merged_chinese_llama_7b
$ ./quantize ../merged_chinese_llama_7b/ggml-model-f16.gguf ../merged_chinese_llama_7b/ggml-model-q4_0.gguf q4_0

Step 3: 加载并启动模型

  llama.cpp git:(master) ✗ ./main -s 1 -m ../merged_chinese_llama_7b/ggml-model-q4_0.gguf -p "中国的首都是" --ignore-eos -c 64 -n 128 -t 3 -ngl 10
  • GPU推理:通过Metal编译则只需在./main中指定-ngl 1;cuBLAS编译需要指定offload层数,例如-ngl 40表示offload 40层模型参数到GPU

  • 加载长上下文模型(16K):

    • 启动模型(./main)后debug信息中显示llm_load_print_meta: freq_scale = 0.25,则表示模型转换时已载入相应超参,无需其他特殊设置
    • 如果上述debug信息显示为llm_load_print_meta: freq_scale = 1.0,则需在./main中额外指定–rope-scale 4
  • 默认的量化方法为q4_0,虽然速度最快但损失也较大,推荐使用Q4_K作为替代

  • 机器资源够用且对速度要求不是那么苛刻的情况下可以使用q8_0或Q6_K,非常接近F16模型的效果

如果使用的是Mac Intel可能报如下错:

ggml_metal_init: load pipeline error: Error Domain=CompilerError Code=2 "SC compilation failure
There is a call to an undefined label" UserInfo={NSLocalizedDescription=SC compilation failure
There is a call to an undefined label}
llama_new_context_with_model: ggml_metal_init() failed
llama_init_from_gpt_params: error: failed to create context with model '../merged_chinese_llama_7b/ggml-model-q4_0.gguf'
main: error: unable to load model

可以按这里的修改

$ make clean
$ brew update && brew install clblast
#disable metal and enable clblast 
$ make LLAMA_CLBLAST=1 LLAMA_NO_METAL=1
#这时可以用main进行推理
$./main -s 1 -m ../merged_chinese_llama_7b/ggml-model-q4_0.gguf -p "中国的首都是" --ignore-eos -c 64 -n 128 -t 3 -ngl 10

对应的终端输出为:

(venv) ➜  llama.cpp git:(master) ✗ ./main -s 1 -m ../merged_chinese_llama_7b/ggml-model-q4_0.gguf -p "中国的首都是" --ignore-eos -c 64 -n 128 -t 3 -ngl 10
Log start
main: warning: changing RoPE frequency base to 0 (default 10000.0)
main: warning: scaling RoPE frequency by 0 (default 1.0)
main: build = 1273 (99115f3)
main: built with Apple clang version 14.0.3 (clang-1403.0.22.14.1) for x86_64-apple-darwin22.5.0
main: seed  = 1
ggml_opencl: selecting platform: 'Apple'
ggml_opencl: selecting device: 'Intel(R) UHD Graphics 630'
ggml_opencl: device FP16 support: false
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from ../merged_chinese_llama_7b/ggml-model-q4_0.gguf (version GGUF V2 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q4_0     [  4096, 55296,     1,     1 ]
llama_model_loader: - tensor    1:              blk.0.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    2:              blk.0.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    4:         blk.0.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   10:              blk.1.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   11:              blk.1.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   13:         blk.1.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   19:              blk.2.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   20:              blk.2.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   22:         blk.2.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.3.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   29:              blk.3.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   31:         blk.3.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   37:              blk.4.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   38:              blk.4.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   40:         blk.4.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   46:              blk.5.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   47:              blk.5.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   49:         blk.5.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   55:              blk.6.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   56:              blk.6.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   58:         blk.6.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   60:              blk.6.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   61:            blk.6.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   64:              blk.7.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   65:              blk.7.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   67:         blk.7.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   69:              blk.7.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   70:            blk.7.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   73:              blk.8.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   74:              blk.8.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   76:         blk.8.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   78:              blk.8.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   79:            blk.8.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   82:              blk.9.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   83:              blk.9.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   85:         blk.9.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   87:              blk.9.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   88:            blk.9.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   91:             blk.10.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   92:             blk.10.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   94:        blk.10.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   96:             blk.10.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   97:           blk.10.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  100:             blk.11.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  101:             blk.11.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  103:        blk.11.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  105:             blk.11.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  106:           blk.11.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  109:             blk.12.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  110:             blk.12.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  112:        blk.12.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  114:             blk.12.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  115:           blk.12.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  118:             blk.13.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  119:             blk.13.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  121:        blk.13.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  123:             blk.13.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  124:           blk.13.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  127:             blk.14.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  128:             blk.14.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  130:        blk.14.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  132:             blk.14.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  133:           blk.14.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  136:             blk.15.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  137:             blk.15.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  139:        blk.15.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  145:             blk.16.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  146:             blk.16.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  148:        blk.16.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  150:             blk.16.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  151:           blk.16.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  154:             blk.17.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  155:             blk.17.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  157:        blk.17.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  159:             blk.17.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  160:           blk.17.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  163:             blk.18.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  164:             blk.18.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  166:        blk.18.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  168:             blk.18.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  169:           blk.18.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  172:             blk.19.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  173:             blk.19.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  175:        blk.19.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  177:             blk.19.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  178:           blk.19.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  181:             blk.20.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  182:             blk.20.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  184:        blk.20.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  186:             blk.20.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  187:           blk.20.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  190:             blk.21.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  191:             blk.21.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  193:        blk.21.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  195:             blk.21.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  196:           blk.21.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  199:             blk.22.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  200:             blk.22.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  202:        blk.22.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  203:           blk.22.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  204:             blk.22.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  206:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  207:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  208:             blk.23.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  209:             blk.23.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  211:        blk.23.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  212:           blk.23.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  213:             blk.23.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  214:           blk.23.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  215:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  216:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  217:             blk.24.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  218:             blk.24.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  220:        blk.24.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  221:           blk.24.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  222:             blk.24.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  223:           blk.24.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  224:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  225:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  226:             blk.25.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  227:             blk.25.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  229:        blk.25.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  230:           blk.25.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  231:             blk.25.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  232:           blk.25.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  233:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  234:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  235:             blk.26.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  236:             blk.26.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  238:        blk.26.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  239:           blk.26.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  240:             blk.26.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  241:           blk.26.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  242:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  243:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  244:             blk.27.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  245:             blk.27.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  247:        blk.27.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  248:           blk.27.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  249:             blk.27.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  250:           blk.27.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  251:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  252:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  253:             blk.28.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  254:             blk.28.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  256:        blk.28.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  257:           blk.28.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  258:             blk.28.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  259:           blk.28.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  260:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  261:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  262:             blk.29.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  263:             blk.29.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  265:        blk.29.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  266:           blk.29.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  267:             blk.29.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  268:           blk.29.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  269:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  270:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  271:             blk.30.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  272:             blk.30.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  274:        blk.30.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  275:           blk.30.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  276:             blk.30.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  277:           blk.30.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  280:             blk.31.attn_q.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  281:             blk.31.attn_k.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_v.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  283:        blk.31.attn_output.weight q4_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  284:           blk.31.ffn_gate.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  285:             blk.31.ffn_up.weight q4_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  286:           blk.31.ffn_down.weight q4_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  287:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  288:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  289:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  290:                    output.weight q6_K     [  4096, 55296,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str
llama_model_loader: - kv   1:                               general.name str
llama_model_loader: - kv   2:                       llama.context_length u32
llama_model_loader: - kv   3:                     llama.embedding_length u32
llama_model_loader: - kv   4:                          llama.block_count u32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32
llama_model_loader: - kv   7:                 llama.attention.head_count u32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv  10:                       llama.rope.freq_base f32
llama_model_loader: - kv  11:                          general.file_type u32
llama_model_loader: - kv  12:                       tokenizer.ggml.model str
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv  18:               general.quantization_version u32
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  225 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_print_meta: format         = GGUF V2 (latest)
llm_load_print_meta: arch           = llama
llm_load_print_meta: vocab type     = SPM
llm_load_print_meta: n_vocab        = 55296
llm_load_print_meta: n_merges       = 0
llm_load_print_meta: n_ctx_train    = 2048
llm_load_print_meta: n_ctx          = 64
llm_load_print_meta: n_embd         = 4096
llm_load_print_meta: n_head         = 32
llm_load_print_meta: n_head_kv      = 32
llm_load_print_meta: n_layer        = 32
llm_load_print_meta: n_rot          = 128
llm_load_print_meta: n_gqa          = 1
llm_load_print_meta: f_norm_eps     = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff           = 11008
llm_load_print_meta: freq_base      = 10000.0
llm_load_print_meta: freq_scale     = 1
llm_load_print_meta: model type     = 7B
llm_load_print_meta: model ftype    = mostly Q4_0
llm_load_print_meta: model params   = 6.93 B
llm_load_print_meta: model size     = 3.69 GiB (4.57 BPW)
llm_load_print_meta: general.name   = ..
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.09 MB
llm_load_tensors: using OpenCL for GPU acceleration
llm_load_tensors: mem required  = 2687.86 MB (+   32.00 MB per state)
llm_load_tensors: offloading 10 repeating layers to GPU
llm_load_tensors: offloaded 10/33 layers to GPU
llm_load_tensors: VRAM used: 1086 MB
..............................................................................................
llama_new_context_with_model: kv self size  =   32.00 MB
llama_new_context_with_model: compute buffer total size =   15.97 MBsystem_info: n_threads = 3 / 12 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 64, n_batch = 512, n_predict = 128, n_keep = 0中国的首都是世界上政治、军事和文化中心。长安古称"京师",后为北京;北宋时期,东京开封府一度升格为"中都""大都"。《长安志》记载:"自建都以来,因得名曰'长安'者有…

一些说明

这里将两个基座模型和LORA fine tune模型merge的原因在于扩充词汇表之后,Embedding也进行了扩充,词汇表比原始的LlaMA-2 32k大,因而要将Embedding层merge(实际是替换),此外Attention(q,k,v)以及MLP(feedforward,w1,w2,w3)基本都进行了merge操作。由于改动如此之大,以至于《大语言模型之七- Llama-2单GPU微调SFT》博客里微调方法是一样的,但是改动量和训练的资源需求是不一样的,这也导致了扩充中文的微调训练在colab免费的12G GPU内存上是无法完成训练的。

PEFT是 Hugging Face提供的模型训练的高效库,LORA是其提供的方法之一,LORA方式是2021年论文 LoRA: Low-rank adaptation of Large Language Models.首先引入的方法。
其核心思想是可以在仅调整一小部分权重的同时实现出色的性能,进而无需在多台机器上调整数十亿个参数,使整个微调过程更加实用且经济可行。使用PEFT和量化允许在单个GPU上微调具有数十亿个参数的大型模型。比如Embedding是词向量的编码,虽然任务不同,如问答、摘要、协作类的大模型,虽然应用不同,但是词向量编码是可以复用的,不需要改,因而在微调的时候,就不改词向量了,这样就节省存储和运算资源。

相关文章:

大语言模型之十三 LLama2中文推理

在《大语言模型之十二 SentencePiece扩充LLama2中文词汇》一文中已经扩充好了中文词汇表&#xff0c;接下来就是使用整理的中文语料对模型进行预训练了。这里先跳过预训练环节。先试用已经训练好的模型&#xff0c;看看如何推理。 合并模型 这一步骤会合并LoRA权重&#xff0…...

iOS AVAudioSession 详解

iOS AVAudioSession 详解 - 简书 默认没有options&#xff0c;category 7种即可满足条件 - (BOOL)setCategory:(AVAudioSessionCategory)category error:(NSError **)outError API_AVAILABLE(ios(3.0), watchos(2.0), tvos(9.0)) API_UNAVAILABLE(macos); 有options&#xff…...

26-网络通信

网络通信 什么是网络编程&#xff1f; 可以让设备中的程序与网络上其他设备中的程序进行数据交互&#xff08;实现网络通信的&#xff09;。 java.net.包下提供了网络编程的解决方案&#xff01; 基本的通信架构有2种形式&#xff1a;CS架构&#xff08; Client客户端/Server服…...

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石③

嵌入式Linux应用开发-基础知识-第十九章驱动程序基石③ 第十九章 驱动程序基石③19.5 定时器19.5.1 内核函数19.5.2 定时器时间单位19.5.3 使用定时器处理按键抖动19.5.4 现场编程、上机19.5.5 深入研究&#xff1a;定时器的内部机制19.5.6 深入研究&#xff1a;找到系统滴答 1…...

一文拿捏SpringMVC的调用流程

SpringMVC的调用流程 1.核心元素&#xff1a; DispatcherServlet(前端控制器)HandlerMapping(处理器映射器)HandlerAdapter(处理器适配器) ---> Handler(处理器)ViewResolver(视图解析器 )---> view(视图) 2.调用流程 用户发送请求到前端控制器前端控制器接收用户请求…...

一文详解 JDK1.8 的 Lambda、Stream、LocalDateTime

Lambda Lambda介绍 Lambda 表达式(lambda expression)是一个匿名函数&#xff0c;Lambda表达式基于数学中的λ演算得名&#xff0c;直接对应于其中的lambda抽象(lambda abstraction)&#xff0c;是一个匿名函数&#xff0c;即没有函数名的函数。 Lambda表达式的结构 一个 Lamb…...

WebSocket实战之二协议分析

一、前言 上一篇 WebSocket实战之一 讲了WebSocket一个极简例子和基础的API的介绍&#xff0c;这一篇来分析一下WebSocket的协议&#xff0c;学习网络协议最好的方式就是抓包分析一下什么就都明白了。 二、WebSocket协议 本想盗一张网络图&#xff0c;后来想想不太好&#x…...

LeetCode //C - 208. Implement Trie (Prefix Tree)

208. Implement Trie (Prefix Tree) A trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and s…...

【Python】time模块和datetime模块的部分函数说明

时间戳与日期 在说到这俩模块之前&#xff0c;首先先明确几个概念&#xff1a; 时间戳是个很单纯的东西&#xff0c;没有“时区”一说&#xff0c;因为时间戳本质上是经过的时间。日常生活中接触到的“日期”、“某点某时某分”准确的说是时间点&#xff0c;都是有时区概念的…...

Python 无废话-基础知识元组Tuple详讲

“元组 Tuple”是一个有序、不可变的序列集合&#xff0c;元组的元素可以包含任意类型的数据&#xff0c;如整数、浮点数、字符串等&#xff0c;用()表示&#xff0c;如下示例&#xff1a; 元组特征 1) 元组中的各个元素&#xff0c;可以具有不相同的数据类型&#xff0c;如 T…...

【Win】Microsoft Spy++学习笔记

参考资料 《用VisualStudio\Spy查窗口句柄&#xff0c;监控窗口消息》 1. 安装 Spy是VS中的工具&#xff0c;所以直接安装VS就可以了&#xff1b; 2. 检查应用程序架构 ChatGPT-Bing: 对于窗口应用程序分析&#xff0c;确定应用程序是32位还是64位是很重要的&#xff0c;因…...

如何解决版本不兼容Jar包冲突问题

如何解决版本不兼容Jar包冲突问题 引言 “老婆”和“妈妈”同时掉进水里&#xff0c;先救谁&#xff1f; 常言道&#xff1a;编码五分钟&#xff0c;解冲突两小时。作为Java开发来说&#xff0c;第一眼见到ClassNotFoundException、 NoSuchMethodException这些异常来说&…...

数据结构—归并排序-C语言实现

引言&#xff1a;归并排序跟快速排序一样&#xff0c;都运用到了分治的算法&#xff0c;但是归并排序是一种稳定的算法&#xff0c;同时也具备高效&#xff0c;其时间复杂度为O(N*logN) 算法图解&#xff1a; 然后开始归并&#xff1a; 就是这个思想&#xff0c;拆成最小子问题…...

Multiple CORS header ‘Access-Control-Allow-Origin‘ not allowed

今天在修改天天生鲜超市项目的时候&#xff0c;因为使用了前后端分离模式&#xff0c;前端通过网关统一转发请求到后端服务&#xff0c;但是第一次使用就遇到了问题&#xff0c;比如跨域问题&#xff1a; 但是&#xff0c;其实网关里是有配置跨域的&#xff0c;只是忘了把前端项…...

msvcp100.dll丢失怎样修复,msvcp100.dll丢失问题全面解析

msvcp100.dll是一个动态链接库文件&#xff0c;属于 Microsoft Visual C Redistributable 的一个组件。它包含了 C 运行时库&#xff0c;这些库在运行程序时会被加载到内存中。msvcp100.dll文件的主要作用是为基于 Visual C 编写的程序提供必要的运行时支持。 当您运行一个基于…...

最新AI智能问答系统源码/AI绘画系统源码/支持GPT联网提问/Prompt应用+支持国内AI提问模型

一、AI创作系统 SparkAi创作系统是基于国外很火的ChatGPT进行开发的AI智能问答系统和AI绘画系统。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图…...

全连接网络实现回归【房价预测的数据】

也是分为data&#xff0c;model&#xff0c;train&#xff0c;test import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optimclass FCNet(nn.Module):def __init__(self):super(FCNet,self).__init__()self.fc1 nn.Linear(331,200)s…...

mysql八股

1、请你说说mysql索引&#xff0c;以及它们的好处和坏处 检索效率、存储资源、索引 索引就像指向表行的指针&#xff0c;是一个允许查询操作快速确定哪些行符合WHERE子句中的条件&#xff0c;并检索到这些行的其他列值的数据结构索引主要有普通索引、唯一索引、主键索引、外键…...

MATLAB算法实战应用案例精讲-【优化算法】狐猴优化器(LO)(附MATLAB代码实现)

代码实现 MATLAB LO.m %======================================================================= % Lemurs Optimizer: A New Metaheuristic Algorithm % for Global Optimization (LO)% This work is published in Journal of "Applied …...

C#WPF动态资源和静态资源应用实例

本文实例演示C#WPF动态资源和静态资源应用 一、资源概述 静态资源(StaticResource)指的是在程序载入内存时对资源的一次性使用,之后就不再访问这个资源了。 动态资源(DynamicResource)指的是在程序运行过程中然会去访问资源。 WPF中,每个界面元素都含有一个名为Resources…...

游戏逆向中的 NoClip 手段和安全应对方式

文章目录 墙壁边界寻找碰撞 NoClip 是一种典型的黑客行为&#xff0c;允许你穿过墙壁&#xff0c;所以 NoClip 又可以认为是避免碰撞体积的行为 墙壁边界 游戏中设置了碰撞体作为墙壁边界&#xff0c;是 玩家对象 和墙壁发生了碰撞&#xff0c;而不是 相机 玩家对象有他的 X…...

nodejs+vue流浪猫狗救助领养elementui

第三章 系统分析 10 3.1需求分析 10 3.2可行性分析 10 3.2.1技术可行性&#xff1a;技术背景 10 3.2.2经济可行性 11 3.2.3操作可行性&#xff1a; 11 3.3性能分析 11 3.4系统操作流程 12 3.4.1管理员登录流程 12 3.4.2信息添加流程 12 3.4.3信息删除流程 13 第四章 系统设计与…...

Css Flex 弹性布局中的换行与溢出处理方法

Css Flex 弹性布局中的换行与溢出处理方法 CSS弹性布局&#xff08;Flex&#xff09;是CSS3中的一种新的布局方式&#xff0c;它能够帮助我们更加灵活地布局元素。在Flex弹性布局中&#xff0c;元素的布局仅依赖于父容器的设置&#xff0c;而不再需要复杂的相对或绝对定位。本…...

linux系统与应用

Windows中的硬盘和盘符的关系&#xff1b; 硬盘通常为一块到两块&#xff1b;数量与盘符没有直接关系&#xff1b;一块硬盘可以分为多个盘符&#xff0c;如c,d,e,f,g等&#xff1b;当然理论上也可以一块硬盘只有一个盘符&#xff1b;学习linux时&#xff0c;最好使用固态硬盘&a…...

MySQL的结构化语言 DDL DML DQL DCL

一、SQL结构化语言介绍 数据查询语言DQL&#xff1a;其语句称为“数据检索语言”&#xff0c;用以从库中获取数据&#xff0c;确定数据怎样在应用程序给出&#xff0c;保留select是dql&#xff08;也是所有sql&#xff09;用的最多的动词 数据操作语言DML:其语句包括动词insert…...

P5488 差分与前缀和

传送门:洛谷 前题提要:包含了简单的生成函数思想以及多项式乘法,是一道不可多得的多项式好题.故记录一下. 题意:给定一个长为 n 的序列 a&#xff0c;求出其 k 阶差分或前缀和。结果的每一项都需要对 1004535809取模。 对于差分和前缀和我们分开来讨论. 先讨论前缀和部分: …...

uboot启动流程-uboot内存分配

一. uboot启动流程 _main 函数中会调用 board_init_f 函数&#xff0c;本文继续简单分析一下 board_init_f 函数。 具体分析 board_init_f函数的第二部分&#xff1a;内存分配代码。 本文继上一篇文章的学习&#xff0c;地址如下&#xff1a; uboot启动流程-涉及board_init…...

LeetCode 面试题 08.02. 迷路的机器人

文章目录 一、题目二、C# 题解 一、题目 设想有个机器人坐在一个网格的左上角&#xff0c;网格 r 行 c 列。机器人只能向下或向右移动&#xff0c;但不能走到一些被禁止的网格&#xff08;有障碍物&#xff09;。设计一种算法&#xff0c;寻找机器人从左上角移动到右下角的路径…...

画CMB天图使用Planck配色方案

使用Planck的配色方案&#xff1a; 全天图&#xff1a; 或者方形图&#xff1a; 使用下面设置即可&#xff1a; import pspy, pixell from pspy.so_config import DEFAULT_DATA_DIR pixell.colorize.mpl_setdefault("planck")此方法不会改变matplotlib默认配色方案…...

成都瀚网科技有限公司:抖店精选联盟怎么用?

抖音精选联盟是抖音电商平台提供的一项服务&#xff0c;旨在为商家提供更多的推广机会和销售渠道。然而&#xff0c;很多人对于如何使用抖店精选联盟以及如何开通这项服务不太了解。本文将为您详细介绍抖店精选联盟的使用和激活流程。 第一节&#xff1a;如何使用抖店精选联盟 …...

网站网站制作服务/周口网站建设公司

前言&#xff08;仅看介绍本身的可以略过&#xff09; 在离职后的一段时间里&#xff0c;个人总结了过去几年工作的心得&#xff0c;结合以往的工作经验。重新思考并重构了前些年做的一些东西&#xff08;主要是测试相关&#xff09;&#xff0c;产生了设计AutoTest这样的一个测…...

公司网站建设价格/阿里云域名注册官网

前言 纵观神经网络的发展历程&#xff0c;从最原始的MLP&#xff0c;到CNN&#xff0c;到RNN,到LSTM&#xff0c;GRU&#xff0c;再到现在的Attention机制&#xff0c;人们不断的在网络里面加入一些先验知识&#xff0c;使得网络不过于“发散”&#xff0c;能够朝着人们希望的…...

吴江城乡住房和城乡建设局网站/拼多多关键词排名查询

document.addEventListener(blur,function(){document.body.scrollIntoView(false)},true) })复制代码...

做网站上传照片的尺寸/2020新闻大事件摘抄

在linux下输入 crontab -e 命令时&#xff0c;发现 no crontab for root - using an empty one/bin/sh: /usr/bin/vi: No such file or directorycrontab: "/usr/bin/vi" exited with status 127 后来发现是没有下载vi编辑器&#xff0c;所以需要把默认编辑器改成vim…...

wordpress搬家跳回首页/教育培训机构有哪些

题目传送&#xff1a; P3373 【模板】线段树 2 P2023 [AHOI2009]维护序列 该题较传统线段树模板相比多了一个区间乘的操作。一提到线段树的区间维护问题&#xff0c;就自然想到了“懒标记”&#xff1a;为了降低时间复杂度&#xff0c;我们只需将要要查询的区间的真实值更新出…...

手机网站建设系统/2024疫情最新消息今天

先说说我首先体验的gitosis&#xff0c;用Python写成&#xff0c;主页&#xff0c;也是ProGit详叙的一种方案&#xff0c;目前基本上已经停止更新。我觉得最大的特色就是其怪异的配置文件和项目映射&#xff0c;国内有人对其做了改进&#xff0c;包括增加了管理员角色&#xff…...