leetCode 45.跳跃游戏 II 贪心算法
45. 跳跃游戏 II - 力扣(LeetCode)
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4] 输出: 2 解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳3步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4] 输出: 2
>>思路和分析
本题相对于leetCode 55.跳跃游戏 贪心算法 难度增加了,但是思路还是相似的,还是要看最大的覆盖范围
贪心思路:(O_O)?思考:计算最少步数,请问什么时候步数才一定要加一呢?
- ① 局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一
- ② 整体最优:一步尽可能多走,从而达到最少步数
真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!
需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖!
如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点
图中覆盖范围的意义在于,只要红色的区域,最多两步一定可以到!(不用管具体怎么跳,反正一定可以跳到)
C++代码如下:
class Solution {
public:// 贪心算法 时间复杂度: O(n) 空间复杂度: O(1)int jump(vector<int>& nums) {if (nums.size() == 1) return 0;int cur = 0;// 当前覆盖最远距离下标int next = 0;// 下一步覆盖最远距离下标int result = 0;// 记录走的最大步数for(int i=0;i<nums.size()-1;i++) {next=max(i+nums[i],next);// 更新下一步覆盖最远距离下标if(i == cur) {// 遇到当前覆盖最远距离下标if(cur != nums.size()-1) {result++; // 需要走下一步cur = next;// 更新当前覆盖最远距离下标(相当于加油了)if(cur >= nums.size()-1 ) break; // 当前覆盖最远距到达集合终点,不用做result++操作了,直接结束}else break;}}return result;}
};
来自代码随想录版本一:
// 版本一
class Solution {
public:int jump(vector<int>& nums) {if (nums.size() == 1) return 0;int curDistance = 0; // 当前覆盖最远距离下标int ans = 0; // 记录走的最大步数int nextDistance = 0; // 下一步覆盖最远距离下标for (int i = 0; i < nums.size(); i++) {nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖最远距离下标if (i == curDistance) { // 遇到当前覆盖最远距离下标ans++; // 需要走下一步curDistance = nextDistance; // 更新当前覆盖最远距离下标(相当于加油了)if (nextDistance >= nums.size() - 1) break; // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束}}return ans;}
};
- 时间复杂度: O(n)
- 空间复杂度: O(1)
来自代码随想录版本二:
// 版本二
class Solution {
public:int jump(vector<int>& nums) {int curDistance = 0; // 当前覆盖的最远距离下标int ans = 0; // 记录走的最大步数int nextDistance = 0; // 下一步覆盖的最远距离下标for (int i = 0; i < nums.size() - 1; i++) { // 注意这里是小于nums.size() - 1,这是关键所在nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标if (i == curDistance) { // 遇到当前覆盖的最远距离下标curDistance = nextDistance; // 更新当前覆盖的最远距离下标ans++;}}return ans;}
};
- 时间复杂度: O(n)
- 空间复杂度: O(1)
理解本题的关键在于:以最小的步数增加最大的覆盖范围,直到覆盖范围覆盖了终点,这个范围内最少步数一定可以跳到,不用管具体是怎么跳的,不纠结于一步究竟跳一个单位还是两个单位。
参考和推荐文章、视频:
代码随想录 (programmercarl.com)
贪心算法,最少跳几步还得看覆盖范围 | LeetCode: 45.跳跃游戏II_哔哩哔哩_bilibili
相关文章:

leetCode 45.跳跃游戏 II 贪心算法
45. 跳跃游戏 II - 力扣(LeetCode) 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i j] 处: 0 &…...

【MATLAB-基于直方图优化的图像去雾技术】
【MATLAB-基于直方图优化的图像去雾技术】 1 直方图均衡2 程序实现3 局部直方图处理 1 直方图均衡 直方图是图像的一种统计表达形式。对于一幅灰度图像来说,其灰度统计直方图可以反映该图像中不同灰度级出现的统计情况。一般而言,图像的视觉效果和其直方…...

读书笔记|《数据压缩入门》—— 柯尔特·麦克安利斯 亚历克斯·海奇
前言:在接触文本隐写研究领域时了解到这本书。本书可算作《数据压缩》的入门书籍之一,这本书对熵编码、变长编码、统计编码、自适应统计编码、字典编码、上下文编码等常用编码方式的定义及来源进行介绍,对不同场景下不同格式的压缩数据有针对…...
Pandas进阶修炼120题-第五期(一些补充,101-120题)
目录 往期内容:第一期:Pandas基础(1-20题)第二期:Pandas数据处理(21-50题)第三期:Pandas金融数据处理(51-80题)第四期:当Pandas遇上NumPy…...

NPDP产品经理知识(产品创新管理)
复习文化,团队与领导力 产品创新管理: 如何树立愿景: 如何实现产品战略 计划 实施产品开发: 商业化,营销计划,推广活动 管理产品生命周期: 新式走向市场的流程:...

Flutter+SpringBoot实现ChatGPT流实输出
FlutterSpringBoot实现ChatGPT流式输出、上下文了连续对话 最终实现Flutter的流式输出上下文连续对话。 这里就是提供一个简单版的工具类和使用案例,此处页面仅参考。 服务端 这里直接封装提供工具类,修改自己的apiKey即可使用,支持连续…...

淘宝天猫粉丝福利购店铺优惠券去哪里找到领取网站?
淘宝天猫优惠券去哪里找到领取网站? 领取淘宝天猫粉丝福利购优惠券可通过百度搜索:草柴,进入草柴官方网站 或 手机应用商店搜索:草柴,下载安装草柴APP,就可以领取淘宝天猫优惠券; 草柴APP如何领…...

【考研复习】union有关的输出问题
文章目录 遇到的问题正确解答拓展参考文章 遇到的问题 首次遇到下面的代码时,感觉应该输出65,323。深入理解union的存储之后发现正确答案是:67,323. union {char c;int i; } u; int main(){u.c A;u.i 0x143;printf("%d,%d\n", u.c, u.i); …...
Android学习之路(16) Android 数据库Litepal
一.LitePal的介绍 Litepal是Android郭霖大神的一个开源Android数据库的开源框架,它采用了对象关系映射(ORM)的模式,这是让我们非常好的理解的数据库,一个实体类对应我们数据库中的一个表。该库中还封装了许多的方法&a…...

Redis持久化(RDB/AOF)
"在哪里走散,你都会 找 到 我。" 认识持久化 我们在接触Mysql事务的时候,一定了解过Mysql事务的四个特性: "原子性(A)一致性(C)隔离性(I)持久性(D)" 而其中持久性其实与持久化是一回事,所谓持久与不持久&#x…...

小谈设计模式(15)—观察者模式
小谈设计模式(15)—观察者模式 专栏介绍专栏地址专栏介绍 观察者模式核心思想主要角色Subject(被观察者)ConcreteSubject(具体被观察者)Observer(观察者)ConcreteObserver࿰…...
简单工厂模式 创建型模式(非GoF经典设计模式)
简单工厂模式是属于创建型模式,也因为工厂中的方法一般设置为静态,又叫做静态工厂方法(Static Factory Method)模式,但不属于23种GOF设计模式之一。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工…...

PE文件之导入表
1. 导入表 2. 显示导入表信息的例子 ; 作用: 将RVA地址转成FOA即文件偏移 ; 参数: _pFileHdr 指向读到内存中文件的基址指针 ; _dwRVA 目标RVA地址 ; 返回: 目标RVA转成文件偏移的值 RVA2FOA PROC USES esi edi edx, _pFileHdr:PTR BYTE, _dwRVA:DWORDmov esi, _pFil…...
二、码制及其转换
原码 根据我们所学可知,数字电路的逻辑电路是通过输出0和1来表示二进制数的,那么这个二进制数的正负又该怎么表示呢? 答案是在这个二进制数的最高位作为符号位来表示正负性,用0正数,用1表示负数,在这种表达…...

在pycharm中出现下载软件包失败的解决方法
一. 一般情况下我们会选择在设置中下载软件包,过程如下. 1. 直接点击左上角的文件, 再点击设置, 再点击项目, 在右边选择python解释器,点击号,输入要下载的软件包, 在下面的一系列的包中选择相对应的包,点击安装就可以了,有的时候我们下载的是最新的版本,如果要下载固定的版本…...

10.0 探索API调试事件原理
本章笔者将通过Windows平台下自带的调试API接口实现对特定进程的动态转存功能,首先简单介绍一下关于调试事件的相关信息,调试事件的建立需要依赖于DEBUG_EVENT这个特有的数据结构,该结构用于向调试器报告调试事件。当一个程序发生异常事件或者…...

文心一言 VS 讯飞星火 VS chatgpt (104)-- 算法导论10.1 2题
二、用go语言,说明如何在一个数组 A[1…n]中实现两个栈,使得当两个栈的元素个数之和不为 n 时,两者都不会发生上溢。要求 PUSH 和 POP 操作的运行时间为 O(1)。 文心一言: 在这个问题中,我们要在一个数组 A[1…n] 中…...

检测防火墙是否开启、判断程序是否加入防火墙白名单(附源码)
VC常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)https://blog.csdn.net/chenlycly/article/details/124272585C软件异常排查从入门到精通系列教程(专栏文章列表,欢迎订阅,持续更新...&a…...

vtk 动画入门 1 代码
实现效果如图: #include <vtkAutoInit.h> //VTK_MODULE_INIT(vtkRenderingOpenGL2); //VTK_MODULE_INIT(vtkInteractionStyle); VTK_MODULE_INIT(vtkRenderingOpenGL2); VTK_MODULE_INIT(vtkInteractionStyle); //VTK_MODULE_INIT(vtkRenderingFreeType); #in…...

【VR】【unity】如何在VR中实现远程投屏功能?
【背景】 目前主流的VD应用,用于娱乐很棒,但是用于工作还是无法效率地操作键鼠。用虚拟键盘工作则显然是不现实的。为了让自己的头显能够起到小面积代替多显示屏的作用,自己动手开发投屏VR应用。 【思路】 先实现C#的投屏应用。研究如何将C#投屏应用用Unity 3D项目转写。…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...

【51单片机】4. 模块化编程与LCD1602Debug
1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...
React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?
系列回顾: 在上一篇《React核心概念:State是什么?》中,我们学习了如何使用useState让一个组件拥有自己的内部数据(State),并通过一个计数器案例,实现了组件的自我更新。这很棒&#…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...