当前位置: 首页 > news >正文

leetCode 45.跳跃游戏 II 贪心算法

45. 跳跃游戏 II - 力扣(LeetCode)

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i] 
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳3步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

 >>思路和分析

本题相对于leetCode 55.跳跃游戏 贪心算法 难度增加了,但是思路还是相似的,还是要看最大的覆盖范围

贪心思路:(O_O)?思考:计算最少步数,请问什么时候步数才一定要加一呢?

  • ① 局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一
  • ② 整体最优:一步尽可能多走,从而达到最少步数

真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!

需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖!

如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点

图中覆盖范围的意义在于,只要红色的区域,最多两步一定可以到!(不用管具体怎么跳,反正一定可以跳到)

C++代码如下:

class Solution {
public:// 贪心算法 时间复杂度: O(n) 空间复杂度: O(1)int jump(vector<int>& nums) {if (nums.size() == 1) return 0;int cur = 0;// 当前覆盖最远距离下标int next = 0;// 下一步覆盖最远距离下标int result = 0;// 记录走的最大步数for(int i=0;i<nums.size()-1;i++) {next=max(i+nums[i],next);// 更新下一步覆盖最远距离下标if(i == cur) {// 遇到当前覆盖最远距离下标if(cur != nums.size()-1) {result++; // 需要走下一步cur = next;// 更新当前覆盖最远距离下标(相当于加油了)if(cur >= nums.size()-1 ) break; // 当前覆盖最远距到达集合终点,不用做result++操作了,直接结束}else break;}}return result;}
};

来自代码随想录版本一:

// 版本一
class Solution {
public:int jump(vector<int>& nums) {if (nums.size() == 1) return 0;int curDistance = 0;    // 当前覆盖最远距离下标int ans = 0;            // 记录走的最大步数int nextDistance = 0;   // 下一步覆盖最远距离下标for (int i = 0; i < nums.size(); i++) {nextDistance = max(nums[i] + i, nextDistance);  // 更新下一步覆盖最远距离下标if (i == curDistance) {                         // 遇到当前覆盖最远距离下标ans++;                                  // 需要走下一步curDistance = nextDistance;             // 更新当前覆盖最远距离下标(相当于加油了)if (nextDistance >= nums.size() - 1) break;  // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束}}return ans;}
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

 来自代码随想录版本二:

// 版本二
class Solution {
public:int jump(vector<int>& nums) {int curDistance = 0;    // 当前覆盖的最远距离下标int ans = 0;            // 记录走的最大步数int nextDistance = 0;   // 下一步覆盖的最远距离下标for (int i = 0; i < nums.size() - 1; i++) { // 注意这里是小于nums.size() - 1,这是关键所在nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标if (i == curDistance) {                 // 遇到当前覆盖的最远距离下标curDistance = nextDistance;         // 更新当前覆盖的最远距离下标ans++;}}return ans;}
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

理解本题的关键在于:以最小的步数增加最大的覆盖范围,直到覆盖范围覆盖了终点,这个范围内最少步数一定可以跳到,不用管具体是怎么跳的,不纠结于一步究竟跳一个单位还是两个单位。

参考和推荐文章、视频:

 代码随想录 (programmercarl.com)

贪心算法,最少跳几步还得看覆盖范围 | LeetCode: 45.跳跃游戏II_哔哩哔哩_bilibili 

相关文章:

leetCode 45.跳跃游戏 II 贪心算法

45. 跳跃游戏 II - 力扣&#xff08;LeetCode&#xff09; 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: 0 &…...

【MATLAB-基于直方图优化的图像去雾技术】

【MATLAB-基于直方图优化的图像去雾技术】 1 直方图均衡2 程序实现3 局部直方图处理 1 直方图均衡 直方图是图像的一种统计表达形式。对于一幅灰度图像来说&#xff0c;其灰度统计直方图可以反映该图像中不同灰度级出现的统计情况。一般而言&#xff0c;图像的视觉效果和其直方…...

读书笔记|《数据压缩入门》—— 柯尔特·麦克安利斯 亚历克斯·海奇

前言&#xff1a;在接触文本隐写研究领域时了解到这本书。本书可算作《数据压缩》的入门书籍之一&#xff0c;这本书对熵编码、变长编码、统计编码、自适应统计编码、字典编码、上下文编码等常用编码方式的定义及来源进行介绍&#xff0c;对不同场景下不同格式的压缩数据有针对…...

Pandas进阶修炼120题-第五期(一些补充,101-120题)

目录 往期内容&#xff1a;第一期&#xff1a;Pandas基础&#xff08;1-20题&#xff09;第二期&#xff1a;Pandas数据处理&#xff08;21-50题&#xff09;第三期&#xff1a;Pandas金融数据处理&#xff08;51-80题&#xff09;第四期&#xff1a;当Pandas遇上NumPy&#xf…...

NPDP产品经理知识(产品创新管理)

复习文化&#xff0c;团队与领导力 产品创新管理&#xff1a; 如何树立愿景&#xff1a; 如何实现产品战略 计划 实施产品开发&#xff1a; 商业化&#xff0c;营销计划&#xff0c;推广活动 管理产品生命周期&#xff1a; 新式走向市场的流程&#xff1a;...

Flutter+SpringBoot实现ChatGPT流实输出

FlutterSpringBoot实现ChatGPT流式输出、上下文了连续对话 最终实现Flutter的流式输出上下文连续对话。 这里就是提供一个简单版的工具类和使用案例&#xff0c;此处页面仅参考。 服务端 这里直接封装提供工具类&#xff0c;修改自己的apiKey即可使用&#xff0c;支持连续…...

淘宝天猫粉丝福利购店铺优惠券去哪里找到领取网站?

淘宝天猫优惠券去哪里找到领取网站&#xff1f; 领取淘宝天猫粉丝福利购优惠券可通过百度搜索&#xff1a;草柴&#xff0c;进入草柴官方网站 或 手机应用商店搜索&#xff1a;草柴&#xff0c;下载安装草柴APP&#xff0c;就可以领取淘宝天猫优惠券&#xff1b; 草柴APP如何领…...

【考研复习】union有关的输出问题

文章目录 遇到的问题正确解答拓展参考文章 遇到的问题 首次遇到下面的代码时&#xff0c;感觉应该输出65,323。深入理解union的存储之后发现正确答案是&#xff1a;67,323. union {char c;int i; } u; int main(){u.c A;u.i 0x143;printf("%d,%d\n", u.c, u.i); …...

Android学习之路(16) Android 数据库Litepal

一.LitePal的介绍 Litepal是Android郭霖大神的一个开源Android数据库的开源框架&#xff0c;它采用了对象关系映射&#xff08;ORM&#xff09;的模式&#xff0c;这是让我们非常好的理解的数据库&#xff0c;一个实体类对应我们数据库中的一个表。该库中还封装了许多的方法&a…...

Redis持久化(RDB/AOF)

"在哪里走散&#xff0c;你都会 找 到 我。" 认识持久化 我们在接触Mysql事务的时候&#xff0c;一定了解过Mysql事务的四个特性: "原子性(A)一致性(C)隔离性(I)持久性(D)" 而其中持久性其实与持久化是一回事&#xff0c;所谓持久与不持久&#x…...

小谈设计模式(15)—观察者模式

小谈设计模式&#xff08;15&#xff09;—观察者模式 专栏介绍专栏地址专栏介绍 观察者模式核心思想主要角色Subject&#xff08;被观察者&#xff09;ConcreteSubject&#xff08;具体被观察者&#xff09;Observer&#xff08;观察者&#xff09;ConcreteObserver&#xff0…...

简单工厂模式 创建型模式(非GoF经典设计模式)

简单工厂模式是属于创建型模式&#xff0c;也因为工厂中的方法一般设置为静态&#xff0c;又叫做静态工厂方法&#xff08;Static Factory Method&#xff09;模式&#xff0c;但不属于23种GOF设计模式之一。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工…...

PE文件之导入表

1. 导入表 2. 显示导入表信息的例子 ; 作用: 将RVA地址转成FOA即文件偏移 ; 参数: _pFileHdr 指向读到内存中文件的基址指针 ; _dwRVA 目标RVA地址 ; 返回: 目标RVA转成文件偏移的值 RVA2FOA PROC USES esi edi edx, _pFileHdr:PTR BYTE, _dwRVA:DWORDmov esi, _pFil…...

二、码制及其转换

原码 根据我们所学可知&#xff0c;数字电路的逻辑电路是通过输出0和1来表示二进制数的&#xff0c;那么这个二进制数的正负又该怎么表示呢&#xff1f; 答案是在这个二进制数的最高位作为符号位来表示正负性&#xff0c;用0正数&#xff0c;用1表示负数&#xff0c;在这种表达…...

在pycharm中出现下载软件包失败的解决方法

一. 一般情况下我们会选择在设置中下载软件包,过程如下. 1. 直接点击左上角的文件, 再点击设置, 再点击项目, 在右边选择python解释器,点击号,输入要下载的软件包, 在下面的一系列的包中选择相对应的包,点击安装就可以了,有的时候我们下载的是最新的版本,如果要下载固定的版本…...

10.0 探索API调试事件原理

本章笔者将通过Windows平台下自带的调试API接口实现对特定进程的动态转存功能&#xff0c;首先简单介绍一下关于调试事件的相关信息&#xff0c;调试事件的建立需要依赖于DEBUG_EVENT这个特有的数据结构&#xff0c;该结构用于向调试器报告调试事件。当一个程序发生异常事件或者…...

文心一言 VS 讯飞星火 VS chatgpt (104)-- 算法导论10.1 2题

二、用go语言&#xff0c;说明如何在一个数组 A[1…n]中实现两个栈&#xff0c;使得当两个栈的元素个数之和不为 n 时&#xff0c;两者都不会发生上溢。要求 PUSH 和 POP 操作的运行时间为 O(1)。 文心一言&#xff1a; 在这个问题中&#xff0c;我们要在一个数组 A[1…n] 中…...

检测防火墙是否开启、判断程序是否加入防火墙白名单(附源码)

VC常用功能开发汇总&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xff0c;持续更新...&#xff09;https://blog.csdn.net/chenlycly/article/details/124272585C软件异常排查从入门到精通系列教程&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xff0c;持续更新...&a…...

vtk 动画入门 1 代码

实现效果如图&#xff1a; #include <vtkAutoInit.h> //VTK_MODULE_INIT(vtkRenderingOpenGL2); //VTK_MODULE_INIT(vtkInteractionStyle); VTK_MODULE_INIT(vtkRenderingOpenGL2); VTK_MODULE_INIT(vtkInteractionStyle); //VTK_MODULE_INIT(vtkRenderingFreeType); #in…...

【VR】【unity】如何在VR中实现远程投屏功能?

【背景】 目前主流的VD应用,用于娱乐很棒,但是用于工作还是无法效率地操作键鼠。用虚拟键盘工作则显然是不现实的。为了让自己的头显能够起到小面积代替多显示屏的作用,自己动手开发投屏VR应用。 【思路】 先实现C#的投屏应用。研究如何将C#投屏应用用Unity 3D项目转写。…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...