利用norm.ppfnorm.interval分别计算正态置信区间[实例]
scipy.stats.norm.ppf用于计算正态分布的累积分布函数CDF的逆函数,也称为百分位点函数。它的作用是根据给定的概率值,计算对应的随机变量值。
scipy.stats.norm.interval:用于计算正态分布的置信区间,可指定均值和标准差。
scipy.stats.t.interval:用于计算t分布的置信区间,可选择使用不同的置信水平和自由度。
利用norm.ppf&norm.interval分别计算正态置信区间:
import scipy.stats as stats
import numpy as np
# 指定概率值(例如,95% 置信水平对应的概率)
alpha = 0.05# 指定样本数据和样本大小
# data = [32, 34, 36, 35, 33, 31, 32, 33, 30, 34]
data = [34,56,39,71,84,92,44,67,98,49,55,73,50,62,75,44,88,53,61,25,36,66,77,35]
sample_size = len(data)# 执行D'Agostino's K-squared检验
stat, p_value = stats.normaltest(data)
# 输出结果
print("-------------------")
print("K-squared正态检验统计量:", stat)
print("K-squared正态检验P-value:", p_value)
# 判断是否符合正态分布的零假设
alpha = 0.05 # 显著性水平
if p_value < alpha:print("拒绝零假设,数据不符合正态分布。")
else:print("p_value>0.05无法拒绝零假设,数据符合正态分布。")
print("-------------------")# 计算样本均值和标准误差(标准差除以样本大小的平方根)
sample_mean = sum(data) / sample_size
sample_std = (sum([(x - sample_mean) ** 2 for x in data]) / (sample_size - 1)) ** 0.5
standard_error = sample_std / (sample_size ** 0.5)# 使用百分位点函数计算置信区间的上下限
confidence_interval_lower = stats.norm.ppf(alpha / 2, loc=sample_mean, scale=standard_error)
confidence_interval_upper = stats.norm.ppf(1 - alpha / 2, loc=sample_mean, scale=standard_error)# 输出置信区间的上下限
print("置信区间的下限:", confidence_interval_lower)
print("置信区间的上限:", confidence_interval_upper)print("-------------------")
# 计算正态分布的置信区间
confidence_interval = stats.norm.interval(1 - alpha, loc=sample_mean, scale=sample_std / np.sqrt(sample_size))
# 输出计算结果
print("norm.interval正态分布的置信区间:", confidence_interval)print("--------t分布结果是不是与上面的很接近?-----------")
# 计算t分布的置信区间
t_confidence_interval = stats.t.interval(1 - alpha, df=sample_size - 1, loc=sample_mean, scale=sample_std / np.sqrt(sample_size))
# 输出计算结果
print("t分布的置信区间:", t_confidence_interval)# -------------------
# K-squared正态检验统计量: 1.12645322945576
# K-squared正态检验P-value: 0.5693689625161796
# p_value>0.05无法拒绝零假设,数据符合正态分布。
# -------------------
# 置信区间的下限: 51.79799091398577
# 置信区间的上限: 67.70200908601423
# -------------------
# norm.interval正态分布的置信区间: (51.79799091398577, 67.70200908601423)
# -------------------
# t分布的置信区间: (51.356996738889045, 68.14300326111095)
# [Finished in 5.5s]
附录多种方式正态检验:
import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt# data = np.random.normal(loc=12, scale=2.5, size=340)
data = [34,56,39,71,84,92,44,67,98,49,55,73,50,62,75,44,88,53,61,25,36,66,77,35]
df = pd.DataFrame({'Data': data})# 描述性统计分析
mean = df['Data'].mean()
std_dev = df['Data'].std()
skewness = df['Data'].skew()
kurtosis = df['Data'].kurtosis()print("均值:", mean)
print("标准差:", std_dev)
print("偏度:", skewness)
print("峰度:", kurtosis)# 创建一个2x1的子图布局
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6))
# 可视化 - 正态概率图(Q-Q图)
stats.probplot(data, plot=ax1, dist='norm', fit=True, rvalue=True) #ax1作为绘图的位置
ax1.set_title("Q-Q Plot")# 可视化 - 直方图
ax2.hist(data, bins=6, rwidth=0.8, density=True) # bins个柱状图,宽度是rwidth(0~1),=1没有缝隙
ax2.set_title("Histogram with Kernel Density Estimate")# 调整子图之间的间距
plt.tight_layout()
# 显示图形
plt.show()# 正态性检验 - Shapiro-Wilk检验
stat, p = stats.shapiro(data)
print("Shapiro-Wilk检验统计量:", stat)
print("Shapiro-Wilk检验p值:", p)# Anderson-Darling检验
result = stats.anderson(df['Data'], dist='norm')
print("Anderson-Darling检验统计量:", result.statistic)
print("Anderson-Darling检验临界值:", result.critical_values)# 执行单样本K-S检验,假设数据服从正态分布
statistic, p_value = stats.kstest(data, 'norm')
print("K-S检验统计量:", statistic)
print("K-S检验p值:", p_value)# 执行正态分布检验
k2, p_value = stats.normaltest(data)
print(f"normaltest正态分布检验的统计量 (K^2): {k2}")
print(f"normaltest检验p值: {p_value}")
相关文章:
利用norm.ppfnorm.interval分别计算正态置信区间[实例]
scipy.stats.norm.ppf用于计算正态分布的累积分布函数CDF的逆函数,也称为百分位点函数。它的作用是根据给定的概率值,计算对应的随机变量值。scipy.stats.norm.interval:用于计算正态分布的置信区间,可指定均值和标准差。scipy.st…...
计算机网络各层设备
计算机网络通常被分为七层,每一层都有对应的设备。以下是各层设备的简要介绍: 物理层(Physical Layer):负责传输二进制数据位流的物理媒体和设备,例如网线、光纤、中继器、集线器等。 数据链路层…...
java this用法
在Java中,this是一个关键字,表示当前对象。它可以用来引用当前对象的实例变量、实例方法或者调用当前对象的构造方法。在本文中,我们将深入探讨Java中this关键字的用法。 1. 引用当前对象的实例变量 在Java中,this关键字可以用来…...
【AI视野·今日NLP 自然语言处理论文速览 第四十六期】Tue, 3 Oct 2023
AI视野今日CS.NLP 自然语言处理论文速览 Tue, 3 Oct 2023 (showing first 100 of 110 entries) Totally 100 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Its MBR All the Way Down: Modern Generation Techniques Through the …...
Unity ddx与ddy
有关Unity的dx与dy的概念 引用的文章 1link 2link 3link 4link 有关概念 我们知道在光栅化的时刻,GPUs会在同一时刻并行运行很多Fragment Shader,但是并不是一个pixel一个pixel去执行的,而是将其组织在2x2的一组pixels分块中,…...
bootstrap.xml 和applicaiton.properties和applicaiton.yml的区别和联系
当谈到Spring Boot应用程序的配置时,有三个关键文件经常被提到:bootstrap.xml、application.properties和application.yml。这些文件在应用程序的不同阶段起着不同的作用,并在配置应用程序属性时有一些区别和联系。本文将探讨这些文件的作用、…...
基于被囊群优化的BP神经网络(分类应用) - 附代码
基于被囊群优化的BP神经网络(分类应用) - 附代码 文章目录 基于被囊群优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.被囊群优化BP神经网络3.1 BP神经网络参数设置3.2 被囊群算法应用 4.测试结果&#x…...
我的第一个react.js 的router工程
react.js 开发的时候,都是针对一个页面的,多个页面就要用Router了,本文介绍我在vscode 下的第一个router 工程。 我在学习react.js 前端开发,学到router 路由的时候有点犯难了。经过1-2天的努力,终于完成了第一个工程…...
XXPermissions权限请求框架
官网 项目地址:Github博文地址:一句代码搞定权限请求,从未如此简单 框架亮点 一马当先:首款适配 Android 13 的权限请求框架简洁易用:采用链式调用的方式,使用只需一句代码体积感人:功能在同类…...
远程代码执行渗透测试—Server2128
远程代码执行渗透测试 任务环境说明: √ 服务器场景:Server2128(开放链接) √服务器场景操作系统:Windows √服务器用户名:Administrator密码:pssw0rd 1.找出靶机桌面上文件夹1中的文件RCEBac…...
阿里云关系型数据库有哪些?RDS云数据库汇总
阿里云RDS关系型数据库大全,关系型数据库包括MySQL版、PolarDB、PostgreSQL、SQL Server和MariaDB等,NoSQL数据库如Redis、Tair、Lindorm和MongoDB,阿里云百科分享阿里云RDS关系型数据库大全: 目录 阿里云RDS关系型数据库大全 …...
Linux--socket编程--服务端代码
查看struct sockaddr_in包含的东西: 在/user/include下搜索:grep "struct sockaddr_in { " * -nir r : 递归 i : 不区分大小写 n : 显示行号 socket编程–服务端代码 /* 1、调用 socket 创建套接字 2、调用 bind 添加地址 3、lis…...
安装Vue脚手架图文详解教程
版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 预备工作 在安装Vue脚手架之前,请确保您已经正确安装了npm;假若还尚未安装npm,请你参考 Node.js安装教程图文详解。 安装Vue脚手架 请…...
宠物医院必备,介绍一款宠物疫苗接种管理软件
在当今社会,养宠物已经成为越来越多人的生活方式,宠物疫苗接种已是宠物医院的重要工作,但是目前绝大多数的宠物医院对疫苗接种的管理,还是采取人工登记方式,不仅效率低下,而且无法做到疫苗接种到期自动提醒…...
哈哈,我保研985了,之后会出一期保研经验分享
哈哈,我保研了,之后会出一期保研经验分享 个人背景 学校:河南某四非,计算机科学与技术专业英语成绩:四级439,六级438(夏令营无六级)科研经历:一个软著、国家级大创&…...
C++ 程序员入门之路——旅程的起点与挑战
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
C/C++ 数组面试算法题
1.将一个数组逆序输出 https://blog.csdn.net/qq_45385706/article/details/110739961 1 #include<stdio.h>2 3 #define N 94 5 int main()6 {7 int a[N] {1,2,3,4,5,6,7,8,9};8 for(int i 0;i<N/2;i)9 { 10 int temp a[i]; 11 a[i]…...
【pwn入门】用gdb实现第1个pwn
声明 本文是B站你想有多PWN学习的笔记,包含一些视频外的扩展知识。 有问题的源码 #include <stdio.h> #include <stdlib.h> #include <unistd.h> char sh[]"/bin/sh"; int func(char *cmd){system(cmd);return 0; }int main(){char …...
用pyinstaller打包LGBM模型为ELF/EXE可执行文件
1. 引入 写好的python代码和模型,如果需要做到离线部署、运行,就必须要将代码和模型打包为可独立运行的可执行文件。 使用pyinstaller就能做到这个,相同的代码,在windows上运行就能打包为exe,在linux上运行就能打包为…...
软考中级—— 操作系统知识
进程管理 操作系统概述 操作系统的作用:通过资源管理提高计算机系统的效率;改善人机界面向用户提供友好的工作环境。 操作系统的特征:并发性、共享性、虚拟性、不确定性。 操作系统的功能:进程管理、存储管理、文件管理、设备…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
