当前位置: 首页 > news >正文

nn.Linear(d, num_units, bias=True)设置bias和不设置bias有什么区别?

nn.Linear(d, num_units, bias=True)是PyTorch中定义的一个全连接线性层。其中,d是输入特征的数量,num_units是输出特征的数量,而bias参数决定是否在这个线性变换中添加一个偏置项。

设置bias=Truebias=False的区别如下:

  1. 数学表示:

    • 有偏置: y = W x + b y = Wx+b y=Wx+b
    • 无偏置: y = W x y = Wx y=Wx

    其中, W W W是权重矩阵, x x x是输入, b b b是偏置项, y y y是输出。

  2. 参数数量:

    • 有偏置: 层中的参数总数为 d * num_units + num_units
    • 无偏置: 层中的参数总数为 d * num_units
  3. 模型表达能力:

    • 有偏置: 偏置允许层对不经过原点的数据进行建模。这意味着模型可以更容易地适应数据,特别是当数据的均值不为零时。
    • 无偏置: 没有偏置,模型可能会难以拟合某些数据分布,特别是当数据的均值偏离原点时。
  4. 初始化:

    • 有偏置: 除了权重的初始化之外,偏置也需要初始化。通常,偏置会被初始化为零,但也有其他方法。
    • 无偏置: 只需初始化权重。
  5. 训练时间与复杂性:

    • 有偏置: 由于有更多的参数,训练时间可能会略微增加。
    • 无偏置: 参数少一些,可能稍微减少计算复杂性。

通常,在大多数场景中,默认启用偏置是有利的,因为它增加了模型的表达能力,而额外的计算成本相对较小。但在某些特定的架构或应用中,可能会选择禁用偏置。

相关文章:

nn.Linear(d, num_units, bias=True)设置bias和不设置bias有什么区别?

nn.Linear(d, num_units, biasTrue)是PyTorch中定义的一个全连接线性层。其中,d是输入特征的数量,num_units是输出特征的数量,而bias参数决定是否在这个线性变换中添加一个偏置项。 设置biasTrue与biasFalse的区别如下: 数学表示…...

代码随想录 Day10 栈与队列 LeetCode T239 滑动窗口的最大值 T347 前K个高频元素

简要介绍一下单调队列和优先级队列的不同 元素顺序的处理:单调队列中,元素的顺序是单调的,也就是说,队列中的元素按照特定的单调性(递增或递减)排列。这种特性使得单调队列在处理一些问题时非常高效&#…...

vue/自定义指令

需求: 页面有个input元素,现在要鼠标光标聚焦在上面,让每个页面上的标签都可以聚焦光标,比如,从A页面跳转到B页面的时候,我们依然要聚焦。如果要一遍遍地操作dom就会很麻烦。 这个时候,为了方便…...

借用binlog2sql工具轻松解析MySQL的binlog文件,再现Oracle的闪回功能

借用binlog2sql工具轻松解析MySQL的binlog文件 简介依赖配置用户权限选项配置案例:误UPDATE表数据回滚binlog2sql VS mysqlbinlog 看腻文章了就来听听视频演示吧:https://www.bilibili.com/video/BV1Zj411k7VW/ 简介 binlog2sql是美团大众点评开源的一…...

一次解决Pytorch训练时损失和参数出现Nan或者inf的经历

目前在做实验,参考了一个新的网络架构之后发现训练时损失出现Nan,参数了出现了inf的情况,先说说我的排查经历。 首先肯定是打印损失,损失是最容易出现Nan的,有各种原因,网上也有很多解决办法,我…...

【python入门篇】列表简介及操作(2)

列表是什么? 列表是由一系列按特定顺序排列的元素组成。你可以创建包含字母表中的所有字母、数字 0~9 或所有家庭成员的列表;也可以将任何东西加入列表中,其中的元素之间可以没有任何关系。列表通常包含多个元素,因此给列表指定一…...

数据结构与算法——19.红黑树

这篇文章我们来讲一下红黑树。 目录 1.概述 1.1红黑树的性质 2.红黑树的实现 3.总结 1.概述 首先,我们来大致了解一下什么是红黑树 红黑树是一种自平衡的二叉查找树,是一种高效的查找树。红黑树具有良好的效率,它可在 O(logN) 时间内完…...

js题解(三)

文章目录 柯里化模块乘法改变上下文 柯里化 已知 fn 为一个预定义函数,实现函数 curryIt,调用之后满足如下条件: 1、返回一个函数 a,a 的 length 属性值为 1(即显式声明 a 接收一个参数) 2、调用 a 之后&a…...

CompletableFuture异步回调

CompletableFuture异步回调 CompletableFutureFuture模式CompletableFuture详解1.CompletableFuture的UML类关系2.CompletionStage接口3.使用runAsync和supplyAcync创建子任务4.设置子任务回调钩子5.调用handle()方法统一处理异常和结果6.线程池的使用 异步任务的串行执行thenA…...

Python中匹配模糊的字符串

嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 如何使用thefuzz 库,它允许我们在python中进行模糊字符串匹配。 此外,我们将学习如何使用process 模块,该模块允许我们在模糊…...

PHP图片文件管理功能系统源码

文件图库管理单PHP源码直接解压就能用,单文件,indexm.php文件可以重新命名,上传到需要访问的目录中, 可以查看目录以及各个文件,图片等和下载及修改管理服务。 源码下载:https://download.csdn.net/downloa…...

(枚举 + 树上倍增)Codeforces Round 900 (Div. 3) G

Problem - G - Codeforces 题意: 思路: 首先,目标值和结点权值是直接联系的,最值不可能直接贪心,一定是考虑去枚举一些东西,依靠这种枚举可以遍历所有的有效情况,思考的方向一定是枚举 如果去…...

websocket逆向【python实现websocket拦截】

python实现websocket拦截 前言一、拦截的优缺点优点:缺点:二、实现方法1.环境配置2.代码三、总结前言 开发者工具F12,筛选ws后,websocket的消息是这样显示的,如何获取这里面的消息呢? 以下是本篇文章正文内容 一、拦截的优缺点 主要讲解一下websocket拦截的实现,现在…...

软件测试自动化的成本效益分析

随着软件测试技术的发展,人们已经从最初的手工测试转变为手工和自动化技术相结合的测试方法。目前,人们更多的是关心自动化测试框架、自动化测试工具以及脚本研究等技术方面,而在软件自动化测试方案的效益分析方面涉及较少。 软件测试的目的是…...

【Java】状态修饰符 final static

目录 final 修饰我们的成员方法、成员变量、类 示例代码: final 修饰的局部变量 示例代码: static 示例代码: static 访问特点: 示例代码: static关键字的用途 示例代码: static 修饰常量 示例…...

笔试编程ACM模式JS(V8)、JS(Node)框架、输入输出初始化处理、常用方法、技巧

目录 考试注意事项 先审完题意,再动手 在本地编辑器(有提示) 简单题515min 通过率0%,有额外log 常见输入处理 str-> num arr:line.split( ).map(val>Number(val)) 初始化数组 new Array(length).fill(v…...

learn掩码张量

目录 1、什么是掩码张量 2、掩码张量的作用 3、代码演示 (1)、定义一个上三角矩阵,k0或者 k默认为 0 (2)、k1 (3)、k-1 4、掩码张量代码实现 (1)、输出效果 &…...

激活函数介绍

介绍 神经网络当中的激活函数用来提升网络的非线性,以增强网络的表征能力。它有这样几个特点:有界,必须为非常数,单调递增且连续可求导。我们常用的有sigmoid或者tanh,但我们都知道这两个都存在一定的缺点&#xff0c…...

docker方式启动一个java项目-Nginx本地有代码,并配置反向代理

文章目录 案例导入说明1.安装MySQL1.1.准备目录1.2.运行命令1.3.修改配置1.4.重启 2.导入SQL3.导入Demo工程3.1.分页查询商品(仔细看代码,很多新的MP编程技巧)3.2.新增商品3.3.修改商品3.4.修改库存3.5.删除商品3.6.根据id查询商品3.7.根据id…...

前端和后端是Web开发选哪个好?

前端和后端是Web开发中的两个不同的领域,哪一种更适合学习?前景更广呢? 一、引言 Web前端开发就像装饰房间的小瓦匠,勤勤恳恳,仔仔细细,粉饰墙壁,妆点家具。会 HTML,CSS,懂点 JS。…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

基于Springboot+Vue的办公管理系统

角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...