当前位置: 首页 > news >正文

链式法则(Chain Rule)

定义

链式法则(Chain Rule)是概率论和统计学中的一个基本原理,用于计算联合概率分布或条件概率分布的乘积。它可以用于分解一个复杂的概率分布为多个较简单的条件概率分布的乘积,从而简化概率分析问题。

链式法则有两种常见的形式:离散型和连续型。

  1. 离散型链式法则:假设有一系列随机变量 X 1 , X 2 , X 3 , . . . , X n X_1,X_2,X_3,...,X_n X1X2X3...Xn,链式法则可以表示为:

    P ( X 1 , X 2 , X 3 , . . . , X n ) = P ( X 1 ) ∗ P ( X 2 ∣ X 1 ) ∗ P ( X 3 ∣ X 1 , X 2 ) ∗ . . . ∗ P ( X n ∣ X 1 , X 2 , X 3 , . . . , X n − 1 ) P(X_1, X_2, X_3, ..., X_n) = P(X_1) * P(X_2|X_1) * P(X_3|X_1, X_2) * ... * P(X_n|X_1, X_2, X_3, ..., X_{n-1}) P(X1,X2,X3,...,Xn)=P(X1)P(X2X1)P(X3X1,X2)...P(XnX1,X2,X3,...,Xn1)

    这个公式说明了联合概率分布可以分解为一系列条件概率的乘积。从 X 1 X_1 X1 X n X_n Xn,每个随机变量的条件概率都是在给定前面所有随机变量的条件下计算的。

  2. 连续型链式法则:对于连续型随机变量,链式法则可以表示为:

    f ( x 1 , x 2 , x 3 , . . . , x n ) = f ( x 1 ) ∗ f ( x 2 ∣ x 1 ) ∗ f ( x 3 ∣ x 1 , x 2 ) ∗ . . . ∗ f ( x n ∣ x 1 , x 2 , x 3 , . . . , x n − 1 ) f(x_1, x_2, x_3, ..., x_n) = f(x_1) * f(x_2|x_1) * f(x_3|x_1, x_2) * ... * f(x_n|x_1, x_2, x_3, ..., x_{n-1}) f(x1,x2,x3,...,xn)=f(x1)f(x2x1)f(x3x1,x2)...f(xnx1,x2,x3,...,xn1)

    这个公式与离散型链式法则类似,但涉及到概率密度函数而不是概率质量函数。同样,每个随机变量的条件密度函数都是在给定前面所有随机变量的条件下计算的。

链式法则在概率推断、贝叶斯统计、机器学习和信息论等领域都有广泛的应用,它可以帮助分解复杂的联合分布,使问题变得更容易处理。

举例说明

让我们通过一个简单的例子来说明链式法则的应用。

假设有三个随机变量:A、B 和 C,它们表示以下事件:

  • A 表示一个人是否患有心脏病(1表示患病,0表示不患病)。
  • B 表示一个人是否吸烟(1表示吸烟,0表示不吸烟)。
  • C 表示一个人是否有高胆固醇水平(1表示高胆固醇,0表示正常胆固醇水平)。

我们想计算患有心脏病的人中吸烟和高胆固醇的联合概率。根据链式法则,我们可以表示为:

P ( A = 1 , B = 1 , C = 1 ) = P ( A = 1 ) ∗ P ( B = 1 ∣ A = 1 ) ∗ P ( C = 1 ∣ A = 1 , B = 1 ) P(A=1, B=1, C=1) = P(A=1) * P(B=1|A=1) * P(C=1|A=1, B=1) P(A=1,B=1,C=1)=P(A=1)P(B=1∣A=1)P(C=1∣A=1,B=1)

这里的各个概率表示如下:

  • P(A=1):心脏病的先验概率。
  • P(B=1|A=1):在患有心脏病的条件下吸烟的条件概率。
  • P(C=1|A=1, B=1):在患有心脏病且吸烟的条件下高胆固醇的条件概率。

如果我们已经有了这些概率的估计值,就可以使用链式法则来计算患有心脏病、吸烟和高胆固醇的人的联合概率。这个联合概率可以用于做出关于患病风险和健康行为的决策。

链式法则可以在更复杂的概率模型中应用,例如贝叶斯网络,以分解联合概率分布并进行推断和决策分析。这个例子只是一个简单的示例,用来说明链式法则的基本概念。

熵的链式法则

熵的链式法则用于计算多个随机变量的联合熵。如果有随机变量X1, X2, …, Xn,则它可以表示为:

H ( X 1 , X 2 , . . . , X n ) = H ( X 1 ) + H ( X 2 ∣ X 1 ) + H ( X 3 ∣ X 1 , X 2 ) + . . . + H ( X n ∣ X 1 , X 2 , . . . , X n − 1 ) H(X_1, X_2, ..., X_n) = H(X_1) + H(X_2|X_1) + H(X_3|X_1, X_2) + ... + H(X_n|X_1, X_2, ..., X_{n-1}) H(X1,X2,...,Xn)=H(X1)+H(X2X1)+H(X3X1,X2)+...+H(XnX1,X2,...,Xn1)

其中,H表示熵, H ( X 1 ) H(X_1) H(X1)是第一个随机变量X_1的熵, H ( X i ∣ X 1 , X 2 , . . . , X i − 1 ) H(X_i|X_1, X_2, ..., X_{i-1}) H(XiX1,X2,...,Xi1)是在给定前面的随机变量的条件下,随机变量X_i的条件熵。

相关文章:

链式法则(Chain Rule)

定义 链式法则(Chain Rule)是概率论和统计学中的一个基本原理,用于计算联合概率分布或条件概率分布的乘积。它可以用于分解一个复杂的概率分布为多个较简单的条件概率分布的乘积,从而简化概率分析问题。 链式法则有两种常见的形…...

AUTOSAR COM模块框架梳理

框架: COM的功能主要就是两个: 把IPDU内的signal提取出来提供给SWC使用,把SWC发送的signal拷贝到IPDU buffer内 所以,COM的关键字是 signal, signal group, IPDU, IPDU group Signal group 是为了保证 Complex Data Types 的数…...

详细介绍区块链之挖矿

对不起,大家,这篇文章对作者来说实在是太有意义和含金量了,作者想把它设置为关注博主才能见全文,请大家理解!如果觉得还是看不懂,抱歉耽误大家的时间,就请取消关注!!&…...

华为OD机试真题-路灯照明问题(Java/C++/Go/Python)

【华为OD机试真题】路灯照明问题(Java/C++/Go/Python) 题目描述 在一条笔直的公路上安装了N个路灯,从位置0开始安装,路灯之间间距固定为100米。 每个路灯都有自己的照明半径,请计算第一个路灯和最后一个路灯之间,无法照明的区间的长度和。 输入描述 第一行为一个数N…...

嵌入式技术面试基本规则

潜规则1:面试的本质不是考试,而是告诉面试官你会做什么 经验不够的小伙伴特别容易犯的一个错误,不清楚面试官到底想问什么,其实整个面试中面试官并没有想难倒你的意思,只是想通过提问的方式来知道你会什么。 比如stm…...

osg实现自定义插件读取自定义格式的模型文件到场景

目录 1. 前言 2. 预备知识 3. 工具、原料 4. 代码实现 1. 前言 osg提供了很多插件来读取模型文件到场景中,这些插件支持大约70种格式类型的文件,但现实中的文件是各式各样,osg不可能囊括所有类型文件,当osg不支持某种类型格式…...

redis进阶

redis.conf 启动的时候就通过配置文件来启动的! # 这个不是配置的,就是在这儿说明一下 # 当配置中需要配置内存大小时,可以使用 1k, 5GB, 4M 等类似的格式,其转换方式如下(不区分大小写) # # 1k > 1000 bytes # 1kb > 102…...

(一)正点原子STM32MP135移植——准备

一、简述 使用板卡:正点原子的ATK-DLMP135 V1.2 从i.mx6ull学习完过来,想继续学习一下移植uboot和内核的,但是原子官方没有MP135的移植教程,STM32MP157的移植教程用的又是老版本的代码,ST官方更新后的代码不兼容老版本…...

Kotlin的关键字 lateinit 和 lazy

序、完善一下曾经的草稿。 Kotlin通常要求我们在定义属性后立即对起进行初始化,当我们不知道理想的初始值时,这样做似乎很奇怪,尤其是在生命周期驱动android属性的情况下。 lateinit 简介 lateinit,Kotlin提供的一个可以延迟初…...

阿里云服务器ECS详细介绍_云主机_服务器托管_弹性计算

阿里云服务器ECS英文全程Elastic Compute Service,云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务,阿里云提供多种云服务器ECS实例规格,如经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等,阿里云服务器网分享阿…...

12、建立健全人员培训体系

9、大小屏分离与精细化审核 10、质量审核的设立与合并 11、视频分类建议 内容仓为公司其他部门输送了许多人才,既包括有潜力的主管,也有表现突出或者具备某些特殊能力的员工,从内容仓走出的同事,有些已经成为公司重要业务某个方…...

代码随想录算法训练营第五十九天 | 647. 回文子串 516.最长回文子序列

1. 回文子串 647. 回文子串 - 力扣(LeetCode) 一个子串左右两个元素相等,并且中间对称,才是回文子串 即 ij 时,[i1: j-1]对称 dp[i][j]: [i:j] 是否是回文字串 当 子串长度大于2 由 dp[i1][j-1] 推出…...

React Redux

redux是什么 Redux是一个模式和库,用于管理和更新应用程序状态,使用称为“action”的事件。它是需要在整个应用程序中使用的状态的集中存储,规则确保状态只能以可预测的方式更新。 Redux主要有三个功能: 获取当前状态更新状态监…...

StreamingLLM - 处理无限长度的输入

文章目录 关于 StreamingLLM使用关于 StreamingLLM Efficient Streaming Language Models with Attention Sinks GitHub : https://github.com/mit-han-lab/streaming-llm论文:https://arxiv.org/abs/2309.17453在流媒体应用程序(如多轮对话)中 部署大型语言模型(LLM)是迫…...

[Linux 命令] nm 详解

1. nm 命令: 显示关于指定 File 中符号的信息,文件可以是对象文件、可执行文件或对象文件库。如果文件没有包含符号信息,nm 命令报告该情况,但不把它解释为出错条件。 nm 命令缺省情况下报告十进制符号表示法下的数字值。 2. 命…...

好文学作品的鉴赏标准

好文学作品的鉴赏标准 2023年诺贝尔文学奖颁给了挪威剧作家约恩福瑟。由于之前的博彩公司给中国作家残雪开出了最高的赔率,以及诺贝尔官方推特在揭晓奖项前发布了一张泰戈尔99年前访华的老照片,残雪的获奖氛围在国内各类媒体的渲染下被拉至极高。当奖项…...

智慧公厕:将科技融入日常生活的创新之举

智慧公厕是当今社会中一项备受关注的创新项目。通过将科技融入公厕设计和管理中,这些公厕不仅能够提供更便利、更卫生的使用体验,还能够极大地提升城市形象和居民生活质量。本文将以智慧公厕领先厂家广州中期科技有限公司,大量的精品案例项目…...

ROS(0)命令及学习资源汇总

ROS安装命令 参考:Ubuntu20.04.4安装ROS Noetic详细教程 - 知乎 安装C和Python3 sudo apt-get install g sudo apt-get install python3 ROS运行小海龟仿真器 roscore确定ROS是否运行成功rosrun turtlesim turtlesim_node运行小海龟仿真器rosrun turtlesim turtle_…...

NodeMCU ESP8266开发流程详解(图文并茂)

文章目录 整体架构打开软件setuploop 连接开发板CP2102版本CH340版本 下载结论 整体架构 NodeMCU ESP8266基于Arduino IDE的开发相对来说还是比较容易上手的,我们基本需要以下几个东西; 一台安装好Arduino IDE的PC,并且已经部署环境&#x…...

【最终版】tkinter+matplotlib实现一个强大的绘图系统

文章目录 辅助坐标轴功能实现代码优化源代码 Python绘图系统: 前置源码: Python打造动态绘图系统📈一 三维绘图系统 📈二 多图绘制系统📈三 坐 标 轴 定 制📈四 定制绘图风格 📈五 数据生成导入…...

OpenLayers 可视化之热力图

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色&#xf…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则&#xf…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...