OpenCV-Python学习(21)—— OpenCV 图像几何变换之图像翻转(cv.flip、np.flip)
1. 学习目标
- 学习 OpenCV 图像的翻转函数 cv.flip;
- 学习 NumPy 矩阵的反转函数 np.flip;
- 自己实现矩阵反转的函数。
2. OpenCV 翻转
翻转也称镜像,是指将图像沿轴线进行轴对称变换。水平镜像是将图像沿垂直中轴线进行左右翻转,垂直镜像是将图像沿水平中轴线进行上下翻转,水平垂直镜像是水平镜像和垂直镜像的叠加。
2.1 cv.flip() 函数说明
cv.flip(src, flipCode[, dst]) -> dst
2.2 参数说明
| 参数 | 说明 |
|---|---|
| src | 表示输入图像。 |
| flipCode | 表示翻转轴线的控制参数,整型(int)。 |
| dst | 表示变换操作的输出图像,可选项。 |
2.3 flipCode 值说明
| 值 | 说明 |
|---|---|
| 0 | 表示水平翻转。 |
| 1 | 表示垂直翻转。 |
| -1 | 表示对角线翻转。 |
3. 翻转实例
3.1 实例代码
import cv2 as cv
import numpy as np# 图像翻转
def image_flip():img = cv.imread("./images/lena.jpg")cv.imshow("original", img)# 水平翻转horizontally_img = cv.flip(img,0)cv.imshow("horizontally_img", horizontally_img)# 垂直翻转vertically_img = cv.flip(img,1)cv.imshow("vertically_img", vertically_img)# 对角线翻转horizontally_vertically_img = cv.flip(img,-1)cv.imshow("horizontally_vertically_img", horizontally_vertically_img)cv.waitKey(0)cv.destroyAllWindows()
if __name__ == "__main__":image_flip()
3.2 翻转效果

4. 矩阵反转
4.1 np.flip() 函数说明
numpy.flip(array, axis) → dst_array
4.2 参数说明
| 参数 | 说明 |
|---|---|
| array | 表示输入的数组。 |
| axis | 表示[integer]轴,阵列沿此轴反转。 |
4.3 axis 值说明
| 值 | 说明 |
|---|---|
| 0 | 表示上下反转。 |
| 1 | 表示左右反转。 |
5. 反转实例
5.1 实例代码
import cv2 as cv
import numpy as np# 阵列反转
def image_np_flip():img = cv.imread("./images/lena_small.jpg")cv.imshow("original", img)# 水平翻转horizontally_img = np.flip(img,0)cv.imshow("horizontally_img", horizontally_img)# 垂直翻转vertically_img = np.flip(img,1)cv.imshow("vertically_img", vertically_img)# 对角线翻转horizontally_vertically_img0 = np.flip(img,0)horizontally_vertically_img = np.flip(horizontally_vertically_img0,1)cv.imshow("horizontally_vertically_img", horizontally_vertically_img)cv.waitKey(0)cv.destroyAllWindows()
if __name__ == "__main__":image_np_flip()
5.2 反转效果

6. 实现阵列反转
6.1 实现阵列上下反转
- 获取阵列的宽高值;
- 复制一份改阵列,防止反转的时候影响了原阵列;
- 上下翻转只需要循环阵列的行,将第一行和最后一行互换,将第二行和倒数第二行互换!!!
- 注意:由于 range 是从 0 开始,所以最后一行需要先减 1!!!
- 注意:解构赋值直接将两个值进行互换,但是换的第一个值需要复制一份互换np.copy(src[i])!!!
# 上下翻转
def flip_ud(src):h,w,c = src.shapesrc = np.copy(src)for i in range(h//2):# cur = np.copy(src[i])# src[i] = src[h-i-1]# src[h-i-1] = cursrc[i],src[h-i-1] = src[h-i-1],np.copy(src[i])return src
6.2 实现阵列左右反转
- 对比上下反转,左右反转需要循环列一层的互换!!!
# 左右翻转
def flip_lr(src):h,w,c = src.shapesrc = np.copy(src)for i in range(h):for j in range(w//2):src[i][j],src[i][w-j-1] = src[i][w-j-1],np.copy(src[i][j])return src
6.3 实现阵列左上角和右下角反转
# 图像左上角和右下角翻转
def flip_lu_rd(src):h,w,c = src.shapesrc = np.copy(src)# 左上角和右下角翻转for i in range(h//2):for j in range(w//2):src[i][j],src[h-i-1][w-j-1] = src[h-i-1][w-j-1],np.copy(src[i][j])return src
6.4 使用 6.3 的方法实现对角线反转
- 图像左上角和右下角翻转;
- 右上角和左下角翻转;
2.1 左右翻转;
2.2 图像左上角和右下角翻转;
2.3 左右翻转图像还原。
def flip_ud_lr(src):# 图像左上角和右下角翻转src = flip_lu_rd(src)# 右上角和左下角翻转# 1. 左右翻转src = flip_lr(src)# 2. 图像左上角和右下角翻转src = flip_lu_rd(src)# 3. 左右翻转图像还原src = flip_lr(src)return src
6.5 直接使用 6.1 和 6.2 实现对角线反转
def flip_ud_lr(src):# 上下翻转src = flip_ud(src)# 左右翻转src = flip_lr(src)return src
7. 实现图像翻转实例
7.1 翻转实例代码
# 上下翻转
def flip_ud(src):h,w,c = src.shapesrc = np.copy(src)for i in range(h//2):# cur = np.copy(src[i])# src[i] = src[h-i-1]# src[h-i-1] = cursrc[i],src[h-i-1] = src[h-i-1],np.copy(src[i])return src# 左右翻转
def flip_lr(src):h,w,c = src.shapesrc = np.copy(src)for i in range(h):for j in range(w//2):src[i][j],src[i][w-j-1] = src[i][w-j-1],np.copy(src[i][j])return src# 图像左上角和右下角翻转
def flip_lu_rd(src):h,w,c = src.shapesrc = np.copy(src)# 左上角和右下角翻转for i in range(h//2):for j in range(w//2):src[i][j],src[h-i-1][w-j-1] = src[h-i-1][w-j-1],np.copy(src[i][j])return srcdef flip_ud_lr(src):# 图像左上角和右下角翻转src = flip_lu_rd(src)# 右上角和左下角翻转# 1. 左右翻转src = flip_lr(src)# 2. 图像左上角和右下角翻转src = flip_lu_rd(src)# 3. 左右翻转图像还原src = flip_lr(src)return srcdef image_self_flip():img = cv.imread("./images/lena_small.jpg")# cv.imshow("original", img)# 水平翻转horizontally_img = flip_ud(img)cv.imshow("horizontally_img", horizontally_img)# 垂直翻转vertically_img = flip_lr(img)cv.imshow("vertically_img", vertically_img)# 对角线翻转horizontally_vertically_img = flip_ud_lr(img)cv.imshow("horizontally_vertically_img", horizontally_vertically_img)cv.waitKey(0)cv.destroyAllWindows()if __name__ == "__main__":image_self_flip()
实现效果

8. 总结
- 注意: 阵列的反转 和 OpenCV 的翻转 对比,少了对角线翻转,但是使用【上下反转+左右反转】能够实现相同的效果;
- 自己使用循环阵列的方法实现水平、垂直、对角线翻转,但是相比原生方法,计算很慢,需要进行优化!!!
相关文章:
OpenCV-Python学习(21)—— OpenCV 图像几何变换之图像翻转(cv.flip、np.flip)
1. 学习目标 学习 OpenCV 图像的翻转函数 cv.flip;学习 NumPy 矩阵的反转函数 np.flip;自己实现矩阵反转的函数。 2. OpenCV 翻转 翻转也称镜像,是指将图像沿轴线进行轴对称变换。水平镜像是将图像沿垂直中轴线进行左右翻转,垂直…...
CRM系统能帮外贸行业解决哪些问题
国内的外贸行业经历了四个发展阶段,从发展期到繁荣期,CRM客户管理系统逐步走到幕前,成为外贸企业必不可少的主打工具。那么外贸行业整面临哪些问题?该如何解决?下面我们就来说说适合外贸行业的CRM解决方案。 外贸行业…...
掌握lombok简化Java编码完成后端提效
Lombok安装 –>添加依赖 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.16</version><scope>provided</scope> </dependency>scopeprovided,说…...
【蓝桥集训】第七天——并查集
作者:指针不指南吗 专栏:Acwing 蓝桥集训每日一题 🐾或许会很慢,但是不可以停下来🐾 文章目录1.亲戚2.合并集合3.连通块中点的数量有关并查集的知识学习可以移步至—— 【算法】——并查集1.亲戚 或许你并不知道&#…...
该来的总会来,继岳云鹏走红之后,孔云龙也和主流相声界打成一片
说起德云社的岳云鹏,都知道他是农民的孩子,初中没有毕业就外出打工,一路辛酸才走到了今天。当年岳云鹏在北京打工,炸酱面馆里面他和孔云龙最好,两个人又经过老先生介绍,一起投奔郭德纲学说相声。 进入德云社…...
索引的创建与设计原则
1.索引的声明与使用 1.1索引的分类 MySQL的索引包括普通索引、唯一性索引、全文索引、单列索引、多列索引和空间索引等。 从 功能逻辑 上说,索引主要有 4 种,分别是普通索引、唯一索引、主键索引、全文索引。按照 物理实现方式,索引可以分…...
day51【代码随想录】动态规划之回文子串、最长回文子序列
文章目录前言一、回文子串(力扣647)二、最长回文子序列(力扣516)前言 1、回文子串 2、最长回文子序列 一、回文子串(力扣647) 给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目…...
拟凸函数,拟凹函数,单峰函数
拟凸(quasi-convex)函数很早就听说过,但是标准定义一直不太了解,现在总结一下。 一个定义在凸集上的实数函数 fff 是拟凸函数:若对于其定义域内的任意两个点 xxx 和 yyy,以及任意常数 λ∈[0,1]\lambda\in…...
数据处理(伪)代码:卡尔曼滤波 vs. 卡尔曼平滑
步骤一、导入csv或txt格式的试验数据 最简洁也是据说读取速度最快的方法是: pPath C:\data_org\9#-1.txt % 数据文件 data importdata(pPath); % 读取 pPath 的结果到 一个数据结构变量 data 中。 pData data.data; % 提取有效数据数组data 的数据结构如下&a…...
华为OD机试题,用 Java 解【比赛评分】问题
最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...
【基础算法】哈希表(开放寻址法)
🌹作者:云小逸 📝个人主页:云小逸的主页 📝Github:云小逸的Github 🤟motto:要敢于一个人默默的面对自己,强大自己才是核心。不要等到什么都没有了,才下定决心去做。种一颗树,最好的时间是十年前…...
优化算法(寻优问题)
前言 群智能算法(全局最优):模拟退火算法(Simulated annealing,SA),遗传算法(Genetic Algorithm, GA),粒子群算法(Particle Swarm Optimization&…...
基于视频流⽔线的Opencv缺陷检测项⽬
代码链接见文末 1.数据与任务概述 输入为视频数据,我们需要从视频中检测出缺陷,并对缺陷进行分类。 2.整体流程 (1)视频数据读取和轮廓检测 首先,我们需要使用opencv读取视频数据,将彩色图转为灰度图后进行图像阈值处理。阈值处理是为了让前景和背景更明显的区分处理。…...
百万数据excel导出功能如何实现?
最近我做过一个MySQL百万级别数据的excel导出功能,已经正常上线使用了。 这个功能挺有意思的,里面需要注意的细节还真不少,现在拿出来跟大家分享一下,希望对你会有所帮助。 原始需求:用户在UI界面上点击全部导出按钮…...
华为OD机试题,用 Java 解【合规数组】问题
最近更新的博客 华为OD机试 - 猴子爬山 | 机试题算法思路 【2023】华为OD机试 - 分糖果(Java) | 机试题算法思路 【2023】华为OD机试 - 非严格递增连续数字序列 | 机试题算法思路 【2023】华为OD机试 - 消消乐游戏(Java) | 机试题算法思路 【2023】华为OD机试 - 组成最大数…...
SAP ABAP中的数据类型 Data Types
简单来说分两种: 数据字典里定义的在ABAP程序里定义的 文章目录1. ABAP数据字典里的1.1 数字型的1.2 字符型1.3 字节型1.4 特殊类型2. 预定义的ABAP数据类型2.1 预定义数字型2.2 预定义字符型2.3 预定义字节型1. ABAP数据字典里的 1.1 数字型的 用在数学计算里的…...
HashMap~
HashMap: HashMap是面试中经常被问到的一个内容,以下两个经常被问到的问题, Question1:底层数据结构,1.7和1.8有何不同? 答:1.7数组+链表,1.8数组+(链表|红…...
EasyNLP集成K-Global Pointer算法,支持中文信息抽取
作者:周纪咏、汪诚愚、严俊冰、黄俊 导读 信息抽取的三大任务是命名实体识别、关系抽取、事件抽取。命名实体识别是指识别文本中具有特定意义的实体,包括人名、地名、机构名、专有名词等;关系抽取是指识别文本中实体之间的关系;…...
mysql lesson3
DQL查找语句续集.............................. 分组函数(也叫多行处理函数) 1: select sum(sal) from emp;select min(sal)from emp;select max(sal)from emp;select avg(sal)from emp;select count(ename)from emp;2:分组函…...
python源码保护
文章目录代码混淆打包exe编译为字节码源码加密项目发布部署时,为防止python源码泄漏,可以通过几种方式进行处理代码混淆 修改函数、变量名 打包exe 通过pyinstaller 将项目打包为exe可执行程序,不过容易被反编译。 编译为字节码 py_comp…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
