计算机竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题
文章目录
- 1 前言
- 2 用户画像分析概述
- 2.1 用户画像构建的相关技术
- 2.2 标签体系
- 2.3 标签优先级
- 3 实站 - 百货商场用户画像描述与价值分析
- 3.1 数据格式
- 3.2 数据预处理
- 3.3 会员年龄构成
- 3.4 订单占比 消费画像
- 3.5 季度偏好画像
- 3.6 会员用户画像与特征
- 3.6.1 构建会员用户业务特征标签
- 3.6.2 会员用户词云分析
- 4 最后
1 前言
🔥 优质竞赛项目系列,今天要分享的是
基于大数据的用户画像分析系统
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
2 用户画像分析概述
用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。
标签化就是数据的抽象能力
- 互联网下半场精细化运营将是长久的主题
- 用户是根本,也是数据分析的出发点
2.1 用户画像构建的相关技术
我们对构建用户画像的方法进行总结归纳,发现用户画像的构建一般可以分为目标分析、体系构建、画像建立三步。
画像构建中用到的技术有数据统计、机器学习和自然语言处理技术(NLP)等,下如图所示。具体的画像构建方法学长会在后面的部分详细介绍。
按照数据流处理阶段划分用户画像建模的过程,分为三个层,每一层次,都需要打上不同的标签。
- 数据层:用户消费行为的标签。打上事实标签,作为数据客观的记录
- 算法层:透过行为算出的用户建模。打上模型标签,作为用户画像的分类
- 业务层:指的是获客、粘客、留客的手段。打上预测标签,作为业务关联的结果
2.2 标签体系
目前主流的标签体系都是层次化的,如下图所示。首先标签分为几个大类,每个大类下进行逐层细分。在构建标签时,我们只需要构建最下层的标签,就能够映射到上面两级标签。
上层标签都是抽象的标签集合,一般没有实用意义,只有统计意义。例如我们可以统计有人口属性标签的用户比例,但用户有人口属性标签本身对广告投
2.3 标签优先级
构建的优先级需要综合考虑业务需求、构建难易程度等,业务需求各有不同,这里介绍的优先级排序方法主要依据构建的难易程度和各类标签的依存关系,优先级如下图所示:
我们把标签分为三类,这三类标签有较大的差异,构建时用到的技术差别也很大。第一类是人口属性,这一类标签比较稳定,一旦建立很长一段时间基本不用更新,标签体系也比较固定;第二类是兴趣属性,这类标签随时间变化很快,标签有很强的时效性,标签体系也不固定;第三类是地理属性,这一类标签的时效性跨度很大,如GPS轨迹标签需要做到实时更新,而常住地标签一般可以几个月不用更新,挖掘的方法和前面两类也大有不同,如图所示:
3 实站 - 百货商场用户画像描述与价值分析
3.1 数据格式
3.2 数据预处理
部分代码
# 作者:丹成学长 Q746876041
import matplotlib
import warnings
import re
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as pltfrom sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import StandardScaler, MinMaxScaler%matplotlib inline
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
matplotlib.rcParams.update({'font.size' : 16})
plt.style.use('ggplot')
warnings.filterwarnings('ignore')df_cum = pd.read_excel('./cumcm2018c1.xlsx')
df_cum
# 先来对会员信息表进行分析
print('会员信息表一共有{}行记录,{}列字段'.format(df_cum.shape[0], df_cum.shape[1]))
print('数据缺失的情况为:\n{}'.format(df_cum.isnull().mean()))
print('会员卡号(不重复)有{}条记录'.format(len(df_cum['会员卡号'].unique())))# 会员信息表去重
df_cum.drop_duplicates(subset = '会员卡号', inplace = True)
print('会员卡号(去重)有{}条记录'.format(len(df_cum['会员卡号'].unique())))# 去除登记时间的缺失值,不能直接dropna,因为我们需要保留一定的数据集进行后续的LRFM建模操作
df_cum.dropna(subset = ['登记时间'], inplace = True)
print('df_cum(去重和去缺失)有{}条记录'.format(df_cum.shape[0]))# 性别上缺失的比例较少,所以下面采用众数填充的方法
df_cum['性别'].fillna(df_cum['性别'].mode().values[0], inplace = True)
df_cum.info()# 由于出生日期这一列的缺失值过多,且存在较多的异常值,不能贸然删除
# 故下面另建一个数据集L来保存“出生日期”和“性别”信息,方便下面对会员的性别和年龄信息进行统计
L = pd.DataFrame(df_cum.loc[df_cum['出生日期'].notnull(), ['出生日期', '性别']])
L['年龄'] = L['出生日期'].astype(str).apply(lambda x: x[:3] + '0')
L.drop('出生日期', axis = 1, inplace = True)
L['年龄'].value_counts()
...(略)....
3.3 会员年龄构成
# 使用上述预处理后的数据集L,包含两个字段,分别是“年龄”和“性别”,先画出年龄的条形图
fig, axs = plt.subplots(1, 2, figsize = (16, 7), dpi = 100)
# 绘制条形图
ax = sns.countplot(x = '年龄', data = L, ax = axs[0])
# 设置数字标签
for p in ax.patches:height = p.get_height()ax.text(x = p.get_x() + (p.get_width() / 2), y = height + 500, s = '{:.0f}'.format(height), ha = 'center')
axs[0].set_title('会员的出生年代')
# 绘制饼图
axs[1].pie(sex_sort, labels = sex_sort.index, wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[1].set_title('会员的男女比例')
plt.savefig('./会员出生年代及男女比例情况.png')
# 绘制各个年龄段的饼图
plt.figure(figsize = (8, 6), dpi = 100)
plt.pie(res.values, labels = ['中年', '青年', '老年'], autopct = '%.2f%%', pctdistance = 0.8, counterclock = False, wedgeprops = {'width': 0.4})
plt.title('会员的年龄分布')
plt.savefig('./会员的年龄分布.png')
3.4 订单占比 消费画像
# 由于相同的单据号可能不是同一笔消费,以“消费产生的时间”为分组依据,我们可以知道有多少个不同的消费时间,即消费的订单数
fig, axs = plt.subplots(1, 2, figsize = (12, 7), dpi = 100)
axs[0].pie([len(df1.loc[df1['会员'] == 1, '消费产生的时间'].unique()), len(df1.loc[df1['会员'] == 0, '消费产生的时间'].unique())],labels = ['会员', '非会员'], wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[0].set_title('总订单占比')
axs[1].pie([df1.loc[df1['会员'] == 1, '消费金额'].sum(), df1.loc[df1['会员'] == 0, '消费金额'].sum()], labels = ['会员', '非会员'], wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[1].set_title('总消费金额占比')
plt.savefig('./总订单和总消费占比情况.png')
消费偏好:
我觉得会稍微偏向与消费的频次,相当于消费的订单数,因为每笔消费订单其中所包含的消费商品和金额都是不太一样的,有的订单所消费的商品很少,但金额却很大,有的消费的商品很多,但金额却特别少。如果单纯以总金额来衡量的话,会员下次消费时间可能会很长,消费频次估计也会相对变小(因为这次所购买的商品已经足够用了)。所以我会偏向于认为一个用户消费频次(订单数)越多,就越能带来更多的价值,从另一方面上来讲,用户也不可能一直都是消费低端产品,消费频次越多用户的粘性也会相对比较大
3.5 季度偏好画像
# 前提假设:2015-2018年之间,消费者偏好在时间上不会发生太大的变化(均值),消费偏好——>以不同时间的订单数来衡量
quarters_list, quarters_order = orders(df_vip, '季度', 3)
days_list, days_order = orders(df_vip, '天', 36)
time_list = [quarters_list, days_list]
order_list = [quarters_order, days_order]
maxindex_list = [quarters_order.index(max(quarters_order)), days_order.index(max(days_order))]
fig, axs = plt.subplots(1, 2, figsize = (18, 7), dpi = 100)
colors = np.random.choice(['r', 'g', 'b', 'orange', 'y'], replace = False, size = len(axs))
titles = ['季度的均值消费偏好', '天数的均值消费偏好']
labels = ['季度', '天数']
for i in range(len(axs)):ax = axs[i]ax.plot(time_list[i], order_list[i], linestyle = '-.', c = colors[i], marker = 'o', alpha = 0.85)ax.axvline(x = time_list[i][maxindex_list[i]], linestyle = '--', c = 'k', alpha = 0.8)ax.set_title(titles[i])ax.set_xlabel(labels[i])ax.set_ylabel('均值消费订单数')print(f'{titles[i]}最优的时间为: {time_list[i][maxindex_list[i]]}\t 对应的均值消费订单数为: {order_list[i][maxindex_list[i]]}')
plt.savefig('./季度和天数的均值消费偏好情况.png')
# 自定义函数来绘制不同年份之间的的季度或天数的消费订单差异
def plot_qd(df, label_y, label_m, nrow, ncol):"""df: 为DataFrame的数据集label_y: 为年份的字段标签label_m: 为标签的一个列表n_row: 图的行数n_col: 图的列数"""# 必须去掉最后一年的数据,只能对2015-2017之间的数据进行分析y_list = np.sort(df[label_y].unique().tolist())[:-1]colors = np.random.choice(['r', 'g', 'b', 'orange', 'y', 'k', 'c', 'm'], replace = False, size = len(y_list))markers = ['o', '^', 'v']plt.figure(figsize = (8, 6), dpi = 100)fig, axs = plt.subplots(nrow, ncol, figsize = (16, 7), dpi = 100)for k in range(len(label_m)):m_list = np.sort(df[label_m[k]].unique().tolist())for i in range(len(y_list)):order_m = []index1 = df[label_y] == y_list[i]for j in range(len(m_list)):index2 = df[label_m[k]] == m_list[j]order_m.append(len(df.loc[index1 & index2, '消费产生的时间'].unique()))axs[k].plot(m_list, order_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i], markersize = 4)axs[k].set_xlabel(f'{label_m[k]}')axs[k].set_ylabel('消费订单数')axs[k].set_title(f'2015-2018年会员的{label_m[k]}消费订单差异')axs[k].legend()plt.savefig(f'./2015-2018年会员的{"和".join(label_m)}消费订单差异.png')
# 自定义函数来绘制不同年份之间的月份消费订单差异
def plot_ym(df, label_y, label_m):"""df: 为DataFrame的数据集label_y: 为年份的字段标签label_m: 为月份的字段标签"""# 必须去掉最后一年的数据,只能对2015-2017之间的数据进行分析y_list = np.sort(df[label_y].unique().tolist())[:-1]m_list = np.sort(df[label_m].unique().tolist())colors = np.random.choice(['r', 'g', 'b', 'orange', 'y'], replace = False, size = len(y_list))markers = ['o', '^', 'v']fig, axs = plt.subplots(1, 2, figsize = (18, 8), dpi = 100)for i in range(len(y_list)):order_m = []money_m = []index1 = df[label_y] == y_list[i]for j in range(len(m_list)):index2 = df[label_m] == m_list[j]order_m.append(len(df.loc[index1 & index2, '消费产生的时间'].unique()))money_m.append(df.loc[index1 & index2, '消费金额'].sum())axs[0].plot(m_list, order_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i])axs[1].plot(m_list, money_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i])axs[0].set_xlabel('月份')axs[0].set_ylabel('消费订单数')axs[0].set_title('2015-2018年会员的消费订单差异')axs[1].set_xlabel('月份')axs[1].set_ylabel('消费金额总数')axs[1].set_title('2015-2018年会员的消费金额差异')axs[0].legend()axs[1].legend()plt.savefig('./2015-2018年会员的消费订单和金额差异.png')
maxindex = order_nums.index(max(order_nums))
plt.figure(figsize = (8, 6), dpi = 100)
plt.plot(x_list, order_nums, linestyle = '-.', marker = 'o', c = 'm', alpha = 0.8)
plt.xlabel('小时')
plt.ylabel('消费订单')
plt.axvline(x = x_list[maxindex], linestyle = '--', c = 'r', alpha = 0.6)
plt.title('2015-2018年各段小时的销售订单数')
plt.savefig('./2015-2018年各段小时的销售订单数.png')
3.6 会员用户画像与特征
3.6.1 构建会员用户业务特征标签
# 取DataFrame之后转置取values得到一个列表,再绘制对应的词云,可以自定义一个绘制词云的函数,输入参数为df和会员卡号
"""
L: 入会程度(新用户、中等用户、老用户)
R: 最近购买的时间(月)
F: 消费频数(低频、中频、高频)
M: 消费总金额(高消费、中消费、低消费)
P: 积分(高、中、低)
S: 消费时间偏好(凌晨、上午、中午、下午、晚上)
X:性别
"""# 开始对数据进行分组
"""
L(入会程度):3个月以下为新用户,4-12个月为中等用户,13个月以上为老用户
R(最近购买的时间)
F(消费频次):次数20次以上的为高频消费,6-19次为中频消费,5次以下为低频消费
M(消费金额):10万以上为高等消费,1万-10万为中等消费,1万以下为低等消费
P(消费积分):10万以上为高等积分用户,1万-10万为中等积分用户,1万以下为低等积分用户
"""
df_profile = pd.DataFrame()
df_profile['会员卡号'] = df['id']
df_profile['性别'] = df['X']
df_profile['消费偏好'] = df['S'].apply(lambda x: '您喜欢在' + str(x) + '时间进行消费')
df_profile['入会程度'] = df['L'].apply(lambda x: '老用户' if int(x) >= 13 else '中等用户' if int(x) >= 4 else '新用户')
df_profile['最近购买的时间'] = df['R'].apply(lambda x: '您最近' + str(int(x) * 30) + '天前进行过一次购物')
df_profile['消费频次'] = df['F'].apply(lambda x: '高频消费' if x >= 20 else '中频消费' if x >= 6 else '低频消费')
df_profile['消费金额'] = df['M'].apply(lambda x: '高等消费用户' if int(x) >= 1e+05 else '中等消费用户' if int(x) >= 1e+04 else '低等消费用户')
df_profile['消费积分'] = df['P'].apply(lambda x: '高等积分用户' if int(x) >= 1e+05 else '中等积分用户' if int(x) >= 1e+04 else '低等积分用户')
df_profile
3.6.2 会员用户词云分析
# 开始绘制用户词云,封装成一个函数来直接显示词云
def wc_plot(df, id_label = None):"""df: 为DataFrame的数据集id_label: 为输入用户的会员卡号,默认为随机取一个会员进行展示"""myfont = 'C:/Windows/Fonts/simkai.ttf'if id_label == None:id_label = df.loc[np.random.choice(range(df.shape[0])), '会员卡号']text = df[df['会员卡号'] == id_label].T.iloc[:, 0].values.tolist()plt.figure(dpi = 100)wc = WordCloud(font_path = myfont, background_color = 'white', width = 500, height = 400).generate_from_text(' '.join(text))plt.imshow(wc)plt.axis('off')plt.savefig(f'./会员卡号为{id_label}的用户画像.png')plt.show()
4 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
计算机竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题
文章目录 1 前言2 用户画像分析概述2.1 用户画像构建的相关技术2.2 标签体系2.3 标签优先级 3 实站 - 百货商场用户画像描述与价值分析3.1 数据格式3.2 数据预处理3.3 会员年龄构成3.4 订单占比 消费画像3.5 季度偏好画像3.6 会员用户画像与特征3.6.1 构建会员用户业务特征标签…...
MFC ExtTextOut函数学习
ExtTextOut - 扩展的文本输出; win32 api的声明如下; ExtTextOut( DC: HDC; {设备环境句柄} X, Y: Integer; {起点坐标} Options: Longint; {选项} Rect: PRect; {指定显示范围; 0 表示限制范围} Str: PChar; {字符串…...
Java中阻塞队列原理、特点、适用场景
文章目录 阻塞队列对比、总览阻塞队列本质思想主要队列讲解ArrayBlockingQueueLinkedBlockingQueueSynchronousQueueLinkedTransferQueuePriorityBlockingQueueDelayQueueLinkedBlockingDeque 阻塞队列对比、总览 阻塞队列本质思想 阻塞队列都是线程安全的队列. 其最主要的功能…...
PHP之linux、apache和nginx与安全优化面试题
1.linux常用命令 查看目录pwd 创建文件touch 创建目录mkdir 删除文件rm 删除目录rmdir移动改名文件 mc 查询目录find 修改权限chmod 压缩包 tar 安装 yum install 修改文件vi查看进程ps 停止进程kill 定时任务crontab 2、nginx的优化 gzip压缩优化 expires缓存…...
算法笔记:0-1背包问题
n个商品组成集合O,每个商品有两个属性vi(体积)和pi(价格),背包容量为C。 求解一个商品子集S,令 优化目标 1. 枚举所有商品组合 共2^n - 1种情况 2. 递归求解 KnapsackSR(h, i, c)ÿ…...
C++入门-day02
引言:在上一节中我们接触了C中的命名空间,学会了C中的标准输出流。这一节,我标题一们讲讲缺省、重载。 一、缺省参数 在C中,给函数的形参默认给一个值就是缺省参数,你可能会比较懵逼,下面看一段代码。 正常…...
模板方法模式,基于继承实现的简单的设计模式(设计模式与开发实践 P11)
文章目录 实现举例应用钩子 Hook 模板方法模式是一种基于继承的设计模式,由两部分构成: 抽象父类(一般封装了子类的算法框架)具体的实现子类 实现 简单地通过继承就可以实现 举例 足球赛 和 篮球赛 都有 3 个步骤,…...
php实战案例记录(16)php://input输入流
php://input是PHP中的一个特殊的输入流,它允许访问请求的原始数据。它主要用于处理非表单的POST请求,例如当请求的内容类型为application/json或application/xml时。使用php://input可以获取到POST请求中的原始数据,无论数据是什么格式。使用…...
cad图纸如何防止盗图(一个的制造设计型企业如何保护设计图纸文件)
在现代企业中,设计图纸是公司的重要知识产权,关系到公司的核心竞争力。然而,随着技术的发展,员工获取和传播设计图纸的途径越来越多样化,如何有效地防止员工复制设计图纸成为了企业管理的一大挑战。本文将从技术、管理…...
Windows11 安全中心页面不可用问题(无法打开病毒和威胁防护)解决方案汇总(图文介绍版)
本文目录 Windows版本与报错信息问题详细图片: 解决方案:方案一、管理员权限(若你确定你的电脑只有你一个账户,则此教程无效,若你也不清楚,请阅读后再做打算)方案二、修改注册表(常用方案)方案三、进入开发…...
1329: 【C2】【排序】奖学金
题目描述 某小学最近得到了一笔赞助,打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金。期末,每个学生都有3门课的成绩:语文、数学、英语。先按总分从高到低排序,如果两个同学总分相同,再按语文成绩从高到低排序,…...
解决dockerfile创建镜像时pip install报错的bug
项目场景: 使用docker-compose创建django容器 问题描述 > [5/5] RUN /bin/bash -c source ~/.bashrc && python3 -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple: 0.954 Looking in indexes: https://…...
算法题:分发饼干
这个题目是贪心算法的基础练习题,解决思路是排序双指针谈心法,先将两个数组分别排序,优先满足最小胃口的孩子。(本题完整题目附在了最后面) 代码如下: class Solution(object):def findContentChildren(se…...
WebSocket编程golang
WebSocket编程 WebSocket协议解读 websocket和http协议的关联: 都是应用层协议,都基于tcp传输协议。跟http有良好的兼容性,ws和http的默认端口都是80,wss和https的默认端口都是443。websocket在握手阶段采用http发送数据。 we…...
PHP之redis 和 memache面试题
目录 1、什么是Redis?它的主要特点是什么? 2、redis数据类型 3、Redis的持久化机制有哪些?它们之间有什么区别? 4、Redis的主从复制是什么?如何配置Redis的主从复制? 5、Redis的集群模式是什么…...
java socket实现代理Android App
实现逻辑就是转发请求和响应。 核心代码 // 启动代理服务器private void startProxyServer() {new Thread(new ProxyServer()).start();}// 代理服务器static class ProxyServer implements Runnable {Overridepublic void run() {try {// 监听指定的端口int port 8098; //一…...
Nacos与Eureka的区别
大家好我是苏麟今天说一说Nacos与Eureka的区别. Nacos Nacos的服务实例分为两种l类型: 临时实例:如果实例宕机超过一定时间,会从服务列表剔除,默认的类型。非临时实例:如果实例宕机,不会从服务列表剔除&…...
浅谈Rob Pike的五条编程规范
又是一篇需要我们多些思考的文章~ 简介下Rob Pike Rob Pike是Unix的先驱,UTF-8的设计人,Go语言核心设计者之一。 Rob Pike的5条编程规则 原文地址:http://users.ece.utexas.edu/~adnan/pike.html 中文翻译: 罗布派克&#x…...
LeetCode 377.组合总和IV 可解决一步爬m个台阶到n阶楼顶问题( 完全背包 + 排列数)
给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。 题目数据保证答案符合 32 位整数范围 示例 1: 输入:nums [1,2,3], target 4 输出:7 解释&#x…...
C中volatile总结
在CPU处理过程中,需要将内存中的数据载入到寄存器中才能计算,所以可能涉及到一个问题,如果内存中的数据被更改了,但是寄存器还是使用的旧数据,这样就会造成数据的不同步。 一、volatile关键字的作用 使用volatile关键…...
asp.net班级管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio
一、源码特点 asp.net班级管理系统 是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使用c#语言开发 asp.net班级管理系统 二、功能介绍 1…...
【Pytorch笔记】6.Transforms
pytorch官方文档 - transforms transforms需要使用计算机视觉工具包:torchvision。 torchvision.transforms:常用的图像预处理方法; torchvision.datasets:常用数据集的dataset实现,如MNIST、CIFAR-10、ImageNet等&am…...
nodejs+vue临沂特色产品销售平台elementui
从实际工作出发,对过去的临沂特色产品销售平台存在的问题进行分析,完善用户的使用体会。采用计算机系统来管理信息 提高了工作的效率。 随着信息化社会的形成和微电子技术日新月异的发展,临沂特色产品销售平台是针对目前临沂特色产品销售…...
机器学习必修课 - 使用管道 Pipeline
目标:学习使用管道(pipeline)来提高机器学习代码的效率。 1. 运行环境:Google Colab import pandas as pd from sklearn.model_selection import train_test_split!git clone https://github.com/JeffereyWu/Housing-prices-dat…...
WEB各类常用测试工具
一、单元测试/测试运行器 1、Jest 知名的 Java 单元测试工具,由 Facebook 开源,开箱即用。它在最基础层面被设计用于快速、简单地编写地道的 Java 测试,能自动模拟 require() 返回的 CommonJS 模块,并提供了包括内置的测试环境 …...
Naive UI 文档地址
最近几天官网访问不了,自己用github pages 部署了个 官网 github pages...
在CentOS7系统中安装MySQL5.7
第一步:下载MySQL包 > wget http://repo.mysql.com/mysql57-community-release-el7-10.noarch.rpm第二步:安装MySQL源 > rpm -Uvh mysql57-community-release-el7-10.noarch.rpm第三步:安装MySQL服务端 > yum install -y mysql-c…...
R语言通过接口获取网上数据平台的免费数据
大家好,我是带我去滑雪! 作为一名统计学专业的学生,时常和数据打交道,我深知数据的重要性。数据是实证研究的重要基础,每当在完成一篇科研论文中的实证研究部分时,我都能深刻体会实证研究最复杂、最耗时的工…...
【Docker内容大集合】Docker从认识到实践再到底层原理大汇总
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总https://blog.csdn.net/yu_cblog/categ…...
算法题:摆动序列
这道题是一道贪心算法题,如果前两个数是递增,则后面要递减,如果不符合则往后遍历,直到找到符合的。(完整题目附在了最后) 代码如下: class Solution(object):def wiggleMaxLength(self, nums):…...
湖北城乡和建设官方网站/百度极速版下载安装
以Pytorch为例 混合精度训练 Pytorch自动混合精度(AMP)训练 Pytorch自动混合精度(AMP)介绍与使用 1. 理论基础 pytorch从1.6版本开始,已经内置了torch.cuda.amp,采用自动混合精度训练就不需要加载第三方NVIDIA的apex库了。AMP (automatic…...
厦门网站建设推广哪家好/网站开发的一般流程
1 ,zookeeper 的 java API 提供的观察者,默认是使用多少次的 ( ) A. 1 次 B. 多次 2 ,如果我们想一直的使用观察者,我们需要在每次观察者对象的任务结束的时候,进行 ( ) 操作。 参考答案 : 1 &a…...
移动商城网站建设 深圳/google谷歌搜索
很多视频网站都有电视剧热度排名,一般是依据用户在自己站的行为数据所体现出的受欢迎程度来排名。这里有一份来自优酷、爱奇艺、搜索视频等五大视频网站的一份视频播放数据,我们利用这份数据做些有意义的事情。 金婚第一部 3 9851 0 0 0 0金婚第一部 3 9…...
360如何做免费的网站/海外新闻app
MUI numbox(数字输入框)隶属于单独的一个公共组件,加入购物车按钮属于商品详情组件,底部tab栏属于单独的公共组件。 1、先将用户选择数量由数字输入框子组件传到商品详情父组件中 (点击加入购物车按钮拿到数字输入框的值) 商品…...
教育网站怎么做/怎么创建网站
using System; using System.Collections.Generic; using System.Linq; using System.Text;namespace 斐波那契数列 {class Program{/// <summary>/// 采用递归的方法求斐波那契数列的第15项的数值/// </summary>/// <param name"args"></param…...
用sublime做的网站打不开/营销的概念是什么
ATL炒冷饭学习之二:绕不开的虚函数 一、前言 对于C的程序员,多态机制是再熟悉不过的了;多态就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数。对于多态机制是如何实现的原理,想必对于…...