当前位置: 首页 > news >正文

【四旋翼飞行器】模拟四旋翼飞行器的平移和旋转动力学(Simulink仿真实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、Simulink仿真及文献


💥1 概述

摘要-由于民用和军用无人机(Unmanned Aerial Vehicles, UAV)的兴趣日益增长,对自主微型飞行机器人的研究得到了显著加强。本文总结了OS4项目建模和控制部分的最终结果,该项目的重点是四旋翼设计和控制。文章介绍了一个考虑到飞行器运动引起的空气动力学系数变化的仿真模型。利用该模型找到的控制参数成功地应用于直升机上,无需重新调整。本文的最后部分描述了控制方法(积分反馈)和我们提出的四旋翼完全控制方案(姿态、高度和位置)。最后,介绍了自主起飞、悬停、降落和避障的结果。

飞行物体一直以来都对人类产生着巨大的吸引力,鼓励各种研究和发展。这个项目始于2003年,当时机器人学界对无人机(Unmanned Aerial Vehicles, UAV)的发展表现出越来越大的兴趣。在拥挤环境下设计和控制无人机的科学挑战以及缺乏现有解决方案的情况非常激发人们的积极性。另一方面,军事和民用市场上广泛的应用领域鼓励了与无人机相关项目的资金支持。从项目开始就决定专注于一种特定的配置:四旋翼飞行器。这种选择不仅源于其动力学特性,这代表了一个有吸引力的控制问题,还源于设计问题。将传感器、执行器和智能集成到一个轻量级的垂直飞行系统中,并保持良好的运行时间并不是一件简单的事情。

A. 现状
在过去几年中,四旋翼飞行器控制的现状发生了巨大的变化。解决这个问题的项目数量大幅增加。这些项目中的大多数是基于商用玩具,如Draganflyer [1],后来进行了修改以增加更多的传感和通信功能。只有少数几个团队解决了MFR设计问题。论文[2]列举了过去10年中一些最重要的四旋翼项目。Mesicopter项目[3]始于1999年,于2001年结束。它旨在研究厘米级四旋翼的可行性。E. Altug在他的论文中介绍了2003年的双摄像头视觉反馈控制[4]。

详细讲解见第4部分。

📚2 运行结果

Matlab代码:

% KF_setup.m           19/11/2013
%Quadrotor Sim 
% 
%
% Purpose: to declare initial values
%
%%
%% sensor noises
position_uncertainty_var = (20/3600*pi/180)^2*ones(3,1);
%% simulation set up
step_time = 0.5;                       % simulation step time(sec)
end_time  = 1000;                   % simulation end time (sec)
%end_time  = 86400;
%% attitude estimator gains
Tatd  = 0.5;                          % attitude estimator update time (sec)
Tqint = 0.5;                         % discrete quaternion integration period (sec)
Tsen_out = 0.5;                      % sensor output period (sec)
TkfProp = 0.5;                       % Kalman filter propagation period (sec)
KfupdatePeriodInCycle = 1;           % Kalman filter update period (propagation cycle)
f_bw_atd = 0.02;                     % attitude determination bandwidth (hz)
%f_bw_atd = 0.005;
zeta = 0.7;
Krp =  (2*pi*f_bw_atd)^2 * eye(3);
Kpp =  2*zeta*2*pi*f_bw_atd*eye(3);
qest0 = [0*1e-4; 0; 0; 1];                          % initial estimator quaternion
delta_west0 = zeros(3,1);                           % initial deviation of estimator angular rate (rad/sec)
max_delta_w = 0.1*pi/180;
delta_w_lim = 2e-4; %0.1/pi/Tqint;
delta_th_lim= 1e-4; %0.1*pi/180/Tqint;
q0 = [0; 0; 0; 1];   %% for estimate error standard deviation prediction calculation
wn=sqrt(diag(Krp));
k=sqrt((wn.^4+4*zeta^2)./(4*zeta*wn));
%% for using Lyapunove equation to solve for expected estimation error
C=[1 0];  K=[Kpp(1,1);Krp(1,1)];      A=[0    1;0 0]-K*C; B=K; 
H=[1 0];  K=[Kpp(1,1);Krp(1,1)]*Tatd; F=[1 Tatd;0 1]-K*H; G=K;
%% Kalman filter setups
Fmat = [eye(3) TkfProp*eye(3);zeros(3,3) eye(3)];
Hmat = [eye(3)  zeros(3,3)];
therr0 = max([abs(qest0(1:3)); 5*1e-4]);  % initial error estimate, assuming q0=[0 0 0 1]
P0 = diag([therr0^2*ones(1,3) 3e-6^2*ones(1,3)]);
R = TkfProp*KfupdatePeriodInCycle*diag(position_uncertainty_var);%1e-3^2*eye(3)*
Q = diag([1e-5^2*ones(1,3), 1e-7^2*ones(1,3)])*TkfProp;
max_rate = pi/180;
P0 = diag([1e-32*ones(1,3) 1e-5^2*ones(1,3)]);
Q = diag([1e-5^2*ones(1,3), 5e-6^2*ones(1,3)])*TkfProp;
max_bias = 1*pi/180/3600;
%% start simulation
Tcapt = Tsen_out;                              % sim variable capture rate (sec)

% KF_setup.m           19/11/2013
%Quadrotor Sim 

%
% Purpose: to declare initial values
%
%%
%% sensor noises
position_uncertainty_var = (20/3600*pi/180)^2*ones(3,1);
%% simulation set up
step_time = 0.5;                       % simulation step time(sec)
end_time  = 1000;                   % simulation end time (sec)
%end_time  = 86400;
%% attitude estimator gains
Tatd  = 0.5;                          % attitude estimator update time (sec)
Tqint = 0.5;                         % discrete quaternion integration period (sec)
Tsen_out = 0.5;                      % sensor output period (sec)
TkfProp = 0.5;                       % Kalman filter propagation period (sec)
KfupdatePeriodInCycle = 1;           % Kalman filter update period (propagation cycle)
f_bw_atd = 0.02;                     % attitude determination bandwidth (hz)
%f_bw_atd = 0.005;
zeta = 0.7;
Krp =  (2*pi*f_bw_atd)^2 * eye(3);
Kpp =  2*zeta*2*pi*f_bw_atd*eye(3);
qest0 = [0*1e-4; 0; 0; 1];                          % initial estimator quaternion
delta_west0 = zeros(3,1);                           % initial deviation of estimator angular rate (rad/sec)
max_delta_w = 0.1*pi/180;
delta_w_lim = 2e-4; %0.1/pi/Tqint;
delta_th_lim= 1e-4; %0.1*pi/180/Tqint;
q0 = [0; 0; 0; 1];   

%% for estimate error standard deviation prediction calculation
wn=sqrt(diag(Krp));
k=sqrt((wn.^4+4*zeta^2)./(4*zeta*wn));
%% for using Lyapunove equation to solve for expected estimation error
C=[1 0];  K=[Kpp(1,1);Krp(1,1)];      A=[0    1;0 0]-K*C; B=K; 
H=[1 0];  K=[Kpp(1,1);Krp(1,1)]*Tatd; F=[1 Tatd;0 1]-K*H; G=K;
%% Kalman filter setups
Fmat = [eye(3) TkfProp*eye(3);zeros(3,3) eye(3)];
Hmat = [eye(3)  zeros(3,3)];
therr0 = max([abs(qest0(1:3)); 5*1e-4]);  % initial error estimate, assuming q0=[0 0 0 1]
P0 = diag([therr0^2*ones(1,3) 3e-6^2*ones(1,3)]);
R = TkfProp*KfupdatePeriodInCycle*diag(position_uncertainty_var);%1e-3^2*eye(3)*
Q = diag([1e-5^2*ones(1,3), 1e-7^2*ones(1,3)])*TkfProp;
max_rate = pi/180;
P0 = diag([1e-32*ones(1,3) 1e-5^2*ones(1,3)]);
Q = diag([1e-5^2*ones(1,3), 5e-6^2*ones(1,3)])*TkfProp;
max_bias = 1*pi/180/3600;
%% start simulation
Tcapt = Tsen_out;                              % sim variable capture rate (sec)

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]杨维,周冰倩,吴志刚,等.四旋翼飞行器的设计与仿真分析[J].计算机光盘软件与应用, 2014, 17(16):2.DOI:CNKI:SUN:GPRJ.0.2014-16-154.

[2]高燕,虞旦.四旋翼飞行器的建模及控制算法仿真[J].工业控制计算机, 2014(9):3.DOI:10.3969/j.issn.1001-182X.2014.09.045.

[3]乔维维.四旋翼飞行器飞行控制系统研究与仿真[D].中北大学,2012.DOI:10.7666/d.D316360.

🌈4 Matlab代码、Simulink仿真及文献

相关文章:

【四旋翼飞行器】模拟四旋翼飞行器的平移和旋转动力学(Simulink仿真实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

Kaggle - LLM Science Exam(一):赛事概述、数据收集、BERT Baseline

文章目录 一、赛事概述1.1 OpenBookQA Dataset1.2 比赛背景1.3 评估方法和代码要求1.4 比赛数据集1.5 优秀notebook 二、BERT Baseline2.1 数据预处理2.2 定义data_collator2.3 加载模型,配置trainer并训练2.4 预测结果并提交2.5 deberta-v3-large 1k Wiki&#xff…...

mmap底层驱动实现(remap_pfn_range函数)

mmap底层驱动实现 myfb.c&#xff08;申请了128K空间&#xff09; #include <linux/init.h> #include <linux/tty.h> #include <linux/device.h> #include <linux/export.h> #include <linux/types.h> #include <linux/module.h> #inclu…...

品牌如何查窜货

当渠道中的产品出现不按规定区域销售时&#xff0c;这种行为就叫做窜货&#xff0c;窜货不仅会扰乱渠道的健康发展&#xff0c;损害经销商的利益&#xff0c;同时会滋生低价、假货的发生&#xff0c;有效的管控窜货&#xff0c;需要品牌先将窜货链店铺找出来&#xff0c;才能进…...

Java基于SpringBoot的车辆充电桩

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 文章目录 1、效果演示效果图 技术栈2、 前言介绍&#xff08;完整源码请私聊&#xff09;3、主要技术3.4.1…...

【ARM】(1)架构简介

前言 ARM既可以认为是一个公司的名字&#xff0c;也可以认为是对一类微处理器的通称&#xff0c;还可以认为是一种技术的名字。 ARM公司是专门从事基于RISC技术芯片设计开发的公司&#xff0c;作为知识产权&#xff08;IP&#xff09;供应商&#xff0c;本身不直接从事芯片生产…...

企业完善质量、环境、健康安全三体系认证的作用及其意义!

一、ISO三体系标准作用 ISO9001&#xff1a;质量管理体系&#xff0c;专门针对企业的质量管理&#xff0c;投标首选&#xff0c;很多大客户要求企业必备这项。 ISO14001&#xff1a;环境管理体系&#xff0c;针对企业的生产环境&#xff0c;排污&#xff0c;节能环保&#xf…...

<HarmonyOS第一课>运行Hello World——闯关习题及答案

判断题 1.DevEco Studio是开发HarmonyOS应用的一站式集成开发环境。&#xff08; 对 &#xff09; 2.main_pages.json存放页面page路径配置信息。&#xff08; 对 &#xff09; 单选题 1.在stage模型中&#xff0c;下列配置文件属于AppScope文件夹的是&#xff1f;&#xff…...

NLP 02 RNN

一、RNN RNN(Recurrent Neural Network),中文称作循环神经网络它一般以序列数据为输入通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。 传统神经网络(包括CNN)&#xff0c;输入和输出都是互相独立的。但有些任务&#xff0c;后续的输出和之前…...

@PostConstruct注解

PostConstruct注解 PostConstruct注解是javax.annotation包下的一个注解&#xff0c;用于标记一个方法&#xff0c;在构造函数执行之后&#xff0c;依赖注入(如Autowired&#xff0c;意味着在方法内部可以安全地使用依赖注入的成员变量&#xff0c;而不会出现空指针异常&#…...

拓世AI|中秋节营销攻略,创意文案和海报一键生成

秋风意境多诗情&#xff0c;中秋月圆思最浓。又是一年中秋节&#xff0c;作为中国传统的重要节日之一&#xff0c;中秋节的意义早已不再仅仅是一家团圆的节日&#xff0c;更是一场商业盛宴。品牌方们纷纷加入其中&#xff0c;希望能够借助这一节日为自己的产品赢得更多的关注和…...

基于知识蒸馏的两阶段去雨去雪去雾模型学习记录(三)之知识测试阶段与评估模块

去雨去雾去雪算法分为两个阶段&#xff0c;分别是知识收集阶段与知识测试阶段&#xff0c;前面我们已经学习了知识收集阶段&#xff0c;了解到知识阶段的特征迁移模块&#xff08;CKT)与软损失&#xff08;SCRLoss&#xff09;,那么在知识收集阶段的主要重点便是HCRLoss(硬损失…...

代码随想录二刷day46

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣139. 单词拆分二、力扣动态规划&#xff1a;关于多重背包&#xff0c;你该了解这些&#xff01; 前言 提示&#xff1a;以下是本篇文章正文内容&#x…...

计算机竞赛 行人重识别(person reid) - 机器视觉 深度学习 opencv python

文章目录 0 前言1 技术背景2 技术介绍3 重识别技术实现3.1 数据集3.2 Person REID3.2.1 算法原理3.2.2 算法流程图 4 实现效果5 部分代码6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习行人重识别(person reid)系统 该项目…...

在线图片转BASE64、在线BASE64转图片

图片转BASE64、BASE64转图片...

什么是RPA?一文了解RPA发展与进程!

RPA&#xff08;Robotic Process Automation&#xff0c;机器人流程自动化&#xff09;是一种通过软件机器人模拟人类在计算机上执行重复性任务的技术。RPA的核心理念是将规则、过程和数据“机器人化”&#xff0c;从而实现对业务流程的自动化。RPA技术可以显著提高企业的工作效…...

【云备份项目】【Linux】:环境搭建(g++、json库、bundle库、httplib库)

文章目录 1. g 升级到 7.3 版本2. 安装 jsoncpp 库3. 下载 bundle 数据压缩库4. 下载 httplib 库从 Win 传输文件到 Linux解压缩 1. g 升级到 7.3 版本 &#x1f517;链接跳转 2. 安装 jsoncpp 库 &#x1f517;链接跳转 3. 下载 bundle 数据压缩库 安装 git 工具 sudo yum…...

工信部教考中心:什么是《研发效能(DevOps)工程师》认证,拿到证书之后有什么作用!(下篇)丨IDCF

拿到证书有什么用&#xff1f; 提高职业竞争力&#xff1a;通过学习认证培训课程可以提升专业技能&#xff0c;了解项目或产品研发全生命周期的核心原则&#xff0c;掌握端到端的研发效能提升方法与实践&#xff0c;包括组织与协作、产品设计与运营、开发与交付、测试与安全、…...

Linux进程相关管理(ps、top、kill)

目录 一、概念 二、查看进程 1、ps命令查看进程 1&#xff09;ps显示某个时间点的程序运行情况 2&#xff09;查看指定的进程信息 2、top命令查看进程 1&#xff09;信息统计区&#xff1a; 2&#xff09;进程信息区 3&#xff09;交互式命令 三、信号控制进程 四、…...

微服务技术栈-Ribbon负载均衡和Nacos注册中心

文章目录 前言一、Ribbon负载均衡1.LoadBalancerInterceptor&#xff08;负载均衡拦截器&#xff09;2.负载均衡策略IRule 二、Nacos注册中心1.Nacos简介2.搭建Nacos注册中心3.服务分级存储模型4.环境隔离5.Nacos与Eureka的区别 总结 前言 在上面那个文章中介绍了微服务架构的…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...