《算法通关之路》chapter17一些通用解题模板
《算法通关之路》学习笔记,记录一下自己的刷题过程,详细的内容请大家购买作者的书籍查阅。
1 二分法
1.1 普通二分法
# 查找nums数组中元素值为target的下标。如果不存在,则返回-1def bs(nums: list[int], target: int) -> int :l, h = 0, len(nums) - 1while l <= h:mid = l + (h - l) // 2if nums[mid] == target:return midelif nums[mid] < target:l = mid + 1else:h = mid - 1return -1nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
nums[bs(nums, 8)]
8
1.2 二分法变种
有些二分法类型的题目,在二分时无法直接判断中间元素是否为目标元素,这类问题被称作二分法变种问题。
例如:在有序数组里面查找第1个大于或等于5的元素,每次判断中间元素时,无法直接断定这个元素是否是第1个大于或等于5的元素,它可能是第2个或第3个大于或等于5的元素。
二分法变种问题大致分为两种情况:
- 查找第一个满足条件的元素
- 查找最后一个满足条件的元素
此外需要注意边界问题,这是二分法变种问题最容易出错的地方
# 查找第1个大于等于x的元素
# 左边界更新为l = mid + 1,不会产生死循环,当剩下1个元素时跳出即可def bs(nums: list[int], target: int) -> int :l, h = 0, len(nums) - 1while l <= h:mid = l + (h - l) // 2if l == h: # 边界条件breakelif nums[mid] < target:l = mid + 1else:h = midreturn lnums = [1, 2, 3, 4, 5, 6, 7, 9, 10]
nums[bs(nums, 8)]
9
# 查找最后1个小于等于x的元素
# 左边界更新为l = mid,会产生死循环,当剩下2个元素时跳出即可def bs(nums: list[int], target: int) -> int :l, h = 0, len(nums) - 1while l <= h:mid = l + (h - l) // 2if l == h or l + 1 == h: # 边界条件breakelif nums[mid] <= target:l = midelse:h = mid - 1return nums[h] if nums[h] <= target else nums[l]nums = [1, 2, 3, 4, 5, 6, 7, 8, 10, 11]
nums[bs(nums, 8)]
10
2 回溯法
回溯法的本质是回溯思想,通常使用递归实现。
递归的实现需要考虑3个方面:搜索的设计、递归的状态及递归的结束条件。
搜索的设计
对求解空间进行划分,让每一层递归都去尝试搜索一部分解空间,直至搜索完所有可能的解空间。
递归的状态
状态是用来区分不同递归的,一般来说,我们至少携带一种状态-当前位置idx,它用于找到当前可以继续前进的搜索空间,以此进入下一层递归。
递归的结束状态
通常包括两个方面:找到可行解,提前结束搜索;搜索完毕,已经没有搜索的解空间。
# ------
ans = []
target = 0
n = 0
nums = []
error = 0
visited = set()
# ------# idx表示当前位置,cur表示当前路径的某个信息,path表示路径
def dfs(idx, cur, path):# -------------结束条件# 1 找到解if cur == target:ans.append(path.copy())return# 2 搜索完毕if idx == n:return# --------------------# 考虑可能的解,进入下一层递归for num in nums:if num == error or num in visited:continue# 更新状态visited.add(num)dfs(idx + 1, cur + num, path + [num])# 恢复状态visited.remove(num)
3 并查集
使用parent数组记录每个节点的父节点,在初始情况下每个节点的父结点为本身,并使用rank记录每个节点为根的树的权值(树的节点数)。
- find§:当parent[p]不为p时,表示存在非本身的父节点,此时让p等于parent[p],即向上寻找祖先节点,不断寻找祖先节点,不断重复这个过程直到parnet[p]等于p。
- union(p, q):通过find(p,q)找到p和q的共同祖先节点,然后将权值小的祖先节点树合并到较高的树中。理论证明,这种算法能够保证合并后的树高度为O(logn)。
可以使用find§ == find(q)来判断两个节点是否属于同一个祖先。
class UnionFind:'''加权快速合并'''def __init__(self, n: int) -> None:self.parent = [i for i in range(n)] # 每个节点的父节点self.rank = [0 for _ in range(n)] # 以该节点为根的树权值(树的节点数)self.cnt = n # 连通区域数量def find(self, p: int) -> int: while p != self.parent[p]:p = self.parent[p]return pdef union(self, p: int, q: int) -> None: # 按秩合并root_p, root_q = self.find(p), self.find(q)if root_p == root_q:returnif self.rank[root_p] > self.rank[root_q]:self.parent[root_q] = root_pelif self.rank[root_p] < self.rank[root_q]:self.parent[root_p] = root_qelse:self.parent[root_q] = root_pself.rank[root_p] += 1self.cnt -= 1
class UnionFind:'''路径压缩加权快速合并'''def __init__(self, n: int) -> None:self.parent = [i for i in range(n)] # 每个节点的父节点self.rank = [0 for _ in range(n)] # 以该节点为根的树权值(树的节点数)self.cnt = n # 连通区域数量def find(self, p: int) -> int: # 路径压缩if p != self.parent[p]:self.parent[p] = self.find(self.parent[p])return self.parent[p]def union(self, p: int, q: int) -> None: # # 按秩合并root_p, root_q = self.find(p), self.find(q)if root_p == root_q:returnif self.rank[root_p] > self.rank[root_q]:self.parent[root_q] = root_pelif self.rank[root_p] < self.rank[root_q]:self.parent[root_p] = root_qelse:self.parent[root_q] = root_pself.rank[root_p] += 1self.cnt -= 1
4 BFS
基于队列的广度优先遍历,将起始节点放入队列中,循环遍历队列中的节点。扩展节点相邻的有效节点,并将其放入队列中。
from collections import dequegrid = [0 * 5 for _ in range(5)] # n * m的矩阵def bfs(grid):m, n = len(grid), len(grid[0])directions = [(0, 1), (0, -1), (-1, 0), (1, 0)] # 扩展方向visited = [[False] * n for _ in range(m)] # 记录节点是否被访问queue = deque()level = 0 # 深度queue.append((0, 0))visited[0][0] = Truewhile len(queue) > 0:sz = len(queue)for _ in range(sz):top = queue.popleft()x, y = top# 扩展节点for d in directions:next_x, next_y = x + d[0], y + d[1]# 判断相邻节点是否有效if next_x < 0 or next_x >= m or next_y < 0 or next_y >= n:continuequeue.append((next_x, next_y))visited[next_x][next_y] = Truelevel += 1return level
5 滑动窗口
借助双指针表示窗口的左边界和右边界,并非根据题目要求不断移动指针。
根据窗口大小是否固定,以及最优解为最大或最小窗口,可以将滑动窗口分为3种类型。
5.1 窗口大小固定,最优解与窗口大小无关
nums = [] # 题目给定数组
cnt = {x : 0 for x in nums} #字典记录出现次数
ans = 0 # 答案
init_len = 0 # 窗口大小def check(cnt): # 题目所述条件passdef get(left, right): # 题目要求的答案pass# 初始化大小为init_len的窗口
for i in range(init_len):num = nums[i]cnt[num] += 1left, right = 0, init_len# 检查是否满足题目要求
if check(cnt):ans = get(left, right)while right < len(nums):num, num2 = nums[left], nums[right]cnt[num] -= 1cnt[num2] += 1# 检查是否满足题目要求if check(cnt):# 优化答案ans = max(ans, get(left, right))left += 1right += 1
5.2 窗口大小不固定,最优解为最小窗口
初始化大小为0的滑动窗口;然后循环移动窗口直到抵达边界,每次右指针right向右移动一步,并检查窗口是否满足条件,如果是,则循环向右移动左指针left,每移动一步,不断尝试缩小窗口直到窗口不满足条件,更新最优解。
left, right = 0, 0
nums = [] # 题目给定数组
cnt = {x : 0 for x in nums} #字典记录出现次数
ans = len(nums) # 初始值while right < len(nums):cnt[nums[right]] += 1# 满足题目要求,尽可能缩小窗口while left <= right and check(cnt):# 优化答案ans = min(ans, right - left + 1)# 尝试缩小窗口cnt[nums[left]] -= 1left += 1right += 1
5.3 窗口大小不固定,最优解为最大窗口
初始化大小为0的滑动窗口;然后循环移动窗口直到抵达边界,每次右指针right向右移动一步,并检查窗口是否不满足条件,如果是,则循环向右移动左指针left,每移动一步直到满足条件,更新最优解。
left, right = 0, 0
nums = [] # 题目给定数组
cnt = {x : 0 for x in nums} #字典记录出现次数
ans = 0 # 初始值while right < len(nums):cnt[nums[right]] += 1# 不满足题目要求,需要缩小窗口while not check(cnt):cnt[nums[left]] -= 1left += 1ans = max(ans, right - left + 1)right += 1
6 数学
6.1 判断素数
def isPrime(n: int) -> bool:if n <= 1:return Falsei = 2while i * i <= n:if n % i == 0:return Falsei += 1return TrueisPrime(121)
False
6.2 最大公约数
欧几里得算法: 两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。
def gcd(a: int, b: int) -> int:return a if b == 0 else gcd(b, a % b)
6.3 最小公倍数
两个数的乘积等于这两个数最大公约数和最小公倍数的乘积,最小公倍数 = 两数乘积 / 两数最大公约数
def lcm(a, int, b: int) -> int:return a * b // gcd(a, b)
相关文章:
《算法通关之路》chapter17一些通用解题模板
《算法通关之路》学习笔记,记录一下自己的刷题过程,详细的内容请大家购买作者的书籍查阅。 1 二分法 1.1 普通二分法 # 查找nums数组中元素值为target的下标。如果不存在,则返回-1def bs(nums: list[int], target: int) -> int :l, h …...

常用求解器安装
1 建模语言pyomo Pyomo是一个Python建模语言,用于数学优化建模。它可以与不同的求解器(如Gurobi,CPLEX,GLPK,SCIP等)集成使用,以求解各种数学优化问题。可以使用Pyomo建立数学优化模型…...
第三章:最新版零基础学习 PYTHON 教程(第一节 - Python 运算符)
在Python编程中,运算符一般用于对值和变量进行操作。这些是用于逻辑和算术运算的标准符号。在本文中,我们将研究不同类型的Python 运算符。 运算符:这些是特殊符号。例如- + 、 * 、 / 等。操作数:它是应用运算符的值。目录 Python 中的运算符类型 Python 中的算术运算符…...

细粒度特征提取和定位用于目标检测:PPCNN
1、简介 近年来,深度卷积神经网络在计算机视觉上取得了优异的性能。深度卷积神经网络以精确地分类目标信息而闻名,并采用了简单的卷积体系结构来降低图层的复杂性。基于深度卷积神经网络概念设计的VGG网络。VGGNet在对大规模图像进行分类方面取得了巨大…...

【STM32单片机】数学自动出题器设计
文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用STM32F103C8T6单片机控制器,使用按键、IIC OLED模块等。 主要功能: 系统运行后,OLED液晶显示出题器开机界面,默认结果范围为100,可按…...

C语言之动态内存管理篇(1)
目录 为什么存在动态内存分配 动态内存函数的介绍 malloc free calloc realloc 常见的动态内存错误 今天收假了,抓紧时间写几篇博客。我又来赶进度了。今天我们来讲解动态内存管理。🆗🆗 为什么存在动态内存分配 假设我们去实现一个…...

React18入门(第二篇)——React18+Ts项目配置husky、eslint、pretttier、commitLint
前言 我的项目版本如下: React: V18.2.0Node.js: V16.14.0TypeScript:最新版工具: VsCode 本文将采用图文详解的方式,手把手带你快速完成在React项目中配置husky、prettier、commitLint,实现编码规范的统…...

【VINS】苹果手机采集单目相机+IMU数据离线运行VINS-Mono
0.准备工作 开个新坑,之前用Android手机做过离线采集数据的实验,这次用IPhone来测试! 1.虚拟机配置Mac OS 下载一个Mac OS 的ios镜像,打开虚拟机按照跟Ubuntu差不多的方式安装,但是发现没有Mac OS的入口。 因为VMwa…...

数据结构 2.1 单链表
1.单链表 线性表:1.有限的序列 2.序列中的每一个元素都有唯一的前驱和后继,除了开头和结尾的两个节点。 顺序表:分配一块连续的内存去存放这些元素,eg、数组 链表:内存是不连续的,元素会各自被分配一块内…...

[Machine Learning]pytorch手搓一个神经网络模型
因为之前虽然写过一点点关于pytorch的东西,但是用的还是他太少了。 这次从头开始,尝试着搓出一个神经网络模型 (因为没有什么训练数据,所以最后的训练部分使用可能不太好跑起来的代码作为演示,如果有需要自己连上数据…...

KdMapper扩展实现之Dell(pcdsrvc_x64.pkms)
1.背景 KdMapper是一个利用intel的驱动漏洞可以无痕的加载未经签名的驱动,本文是利用其它漏洞(参考《【转载】利用签名驱动漏洞加载未签名驱动》)做相应的修改以实现类似功能。需要大家对KdMapper的代码有一定了解。 2.驱动信息 驱动名称pcds…...

python和go相互调用的两种方法
前言 Python 和 Go 语言是两种不同的编程语言,它们分别有自己的优势和适用场景。在一些项目中,由于团队内已有的技术栈或者某一部分业务的需求,可能需要 Python 和 Go 相互调用,以此来提升效率和性能。 性能优势 Go 通常比 Python 更高效&…...
c# 分部视图笔记
Html.Partial("**", 1) public ActionResult **(int page) { ViewBag.page page; return PartialView("**"); }...

Vue3最佳实践 第七章 TypeScript 中
Vue组件中TypeScript 在Vue组件中,我们可以使用TypeScript进行各种类型的设置,包括props、Reactive和ref等。下面,让我们详细地探讨一下这些设置。 设置描述设置props在Vue中,props本身就具有类型设定的功能。但如果你希望使用Ty…...

(三)行为模式:8、状态模式(State Pattern)(C++示例)
目录 1、状态模式(State Pattern)含义 2、状态模式的UML图学习 3、状态模式的应用场景 4、状态模式的优缺点 (1)优点 (2)缺点 5、C实现状态模式的实例 1、状态模式(State Pattern&#x…...
nginx的配置文件概述及简单demo(二)
默认配置文件 当安装完nginx后,它的目录下通常有默认的配置文件 #user nobody; worker_processes 1;#error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info;#pid logs/nginx.pid;events {worker_connection…...

Apollo Planning2.0决策规划算法代码详细解析 (2): vscode gdb单步调试环境搭建
前言: apollo planning2.0 在新版本中在降低学习和二次开发成本上进行了一些重要的优化,重要的优化有接口优化、task插件化、配置参数改造等。 GNU symbolic debugger,简称「GDB 调试器」,是 Linux 平台下最常用的一款程序调试器。GDB 编译器通常以 gdb 命令的形式在终端…...

flex 布局:元素/文字靠右
前言 略 使用flex的justify-content属性控制元素的摆放位置 靠右 <view class"more">展开更多<text class"iconfont20231007 icon-zhankai"></text></view>.more {display: flex;flex-direction: row;color: #636363;justify-co…...

java基础-第1章-走进java世界
一、计算机基础知识 常用的DOS命令 二、计算机语言介绍 三、Java语言概述 四、Java环境的搭建 JDK安装图解 环境变量的配置 配置环境变量意义 配置环境变量步骤 五、第一个Java程序 编写Java源程序 编译Java源文件 运行Java程序 六、Java语言运行机制 核心机制—Java虚拟机 核…...
jvm 堆内存 栈内存 大小设置
4种方式配置不同作用域的jvm的堆栈内存。 1、Eclise 中设置jvm内存: 改动eclipse的配置文件,对全部project都起作用 改动eclipse根文件夹下的eclipse.ini文件 -vmargs //虚拟机设置 -Xms40m //初始内存 -Xmx256m //最大内存 -Xmn16m //最小内存 -XX:PermSize=128M //非堆内…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...