多校联测11 模板题
题目大意
给你四个整数 n , m , s e e d , w n,m,seed,w n,m,seed,w,其中 n , m n,m n,m为两个多项式 A ( x ) = ∑ i = 0 n a i x i A(x)=\sum\limits_{i=0}^na_ix^i A(x)=i=0∑naixi和 B ( x ) = ∑ i = 0 m b i x i B(x)=\sum\limits_{i=0}^mb_ix^i B(x)=i=0∑mbixi的最高次数, s e e d , w seed,w seed,w是用来生成 a i a_i ai和 b i b_i bi的参数。
设 C ( x ) = A ( x ) B ( x ) = ∑ i = 0 n + m c i x i C(x)=A(x)B(x)=\sum\limits_{i=0}^{n+m}c_ix^i C(x)=A(x)B(x)=i=0∑n+mcixi。
有 q q q次询问,第 i i i次输入 l i , r i l_i,r_i li,ri,求 ∑ j = l i r i c j \sum\limits_{j=l_i}^{r_i}c_j j=li∑ricj对 1145141999 1145141999 1145141999( 1145141999 = 2 × 7 × 11 × 13 × 17 × 33647 + 1 1145141999=2\times 7\times 11\times 13\times 17\times 33647+1 1145141999=2×7×11×13×17×33647+1,是一个质数)取模后的值。
构造 a i a_i ai和 b i b_i bi的代码如下,可以对其进行修改来完成此题。
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long u64;
const int p=1145141999;
int a[10000005],b[10000005];
int n,m,q,w;
u64 seed;
u64 rnd()
{u64 x = seed;x ^= x << 13;x ^= x >> 7;x ^= x << 17;return seed = x;
}
int main(){scanf("%d%d%llu%d",&n,&m,&seed,&w);scanf("%d",&q);for(int i=0;i<=n;++i)a[i]=rnd()%w;for(int i=0;i<=m;++i)b[i]=rnd()%w;int l,r;for(int i=1;i<=q;++i){scanf("%d%d",&l,&r);}return 0;
}
1 ≤ n ≤ 6 × 1 0 6 , 1 ≤ q ≤ 25 , 1 ≤ w ≤ 1145141999 1\leq n\leq 6\times 10^6,1\leq q\leq 25,1\leq w\leq 1145141999 1≤n≤6×106,1≤q≤25,1≤w≤1145141999
题解
C ( x ) = A ( x ) B ( x ) = ∑ i = 0 n + m ( ∑ j = 0 i a j b i − j ) x i C(x)=A(x)B(x)=\sum\limits_{i=0}^{n+m}(\sum\limits_{j=0}^ia_jb_{i-j})x^i C(x)=A(x)B(x)=i=0∑n+m(j=0∑iajbi−j)xi
也就是说, c i = ∑ j = 0 i a j b i − j c_i=\sum\limits_{j=0}^ia_jb_{i-j} ci=j=0∑iajbi−j。
那么, ∑ i = 0 t c i = ∑ i = 0 t ∑ j = 0 i a j b i − j = ∑ j = 0 t a j ∑ i = 0 t − j b i \sum\limits_{i=0}^tc_i=\sum\limits_{i=0}^t\sum\limits_{j=0}^ia_jb_{i-j}=\sum\limits_{j=0}^ta_j\sum\limits_{i=0}^{t-j}b_i i=0∑tci=i=0∑tj=0∑iajbi−j=j=0∑taji=0∑t−jbi
令 b i b_i bi的前缀和为 s u m i {sum}_i sumi, S ( t ) = ∑ i = 0 t a i s u m t − i S(t)=\sum\limits_{i=0}^ta_i{sum}_{t-i} S(t)=i=0∑taisumt−i,则答案为 S ( r ) − S ( l − 1 ) S(r)-S(l-1) S(r)−S(l−1)。
求 S ( t ) S(t) S(t)的时间复杂度为 O ( n ) O(n) O(n),所以总时间复杂度为 O ( n q ) O(nq) O(nq)。
code
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long u64;
const long long p=1145141999;
int a[20000005],b[20000005],sum[20000005];
int n,m,q,w;
u64 seed;
u64 rnd()
{u64 x = seed;x ^= x << 13;x ^= x >> 7;x ^= x << 17;return seed = x;
}
long long gt(int t){long long re=0;for(int i=0;i<=t;i++){re=(re+1ll*a[i]*sum[t-i])%p;}return re;
}
int main(){scanf("%d%d%llu%d",&n,&m,&seed,&w);scanf("%d",&q);for(int i=0;i<=n;++i)a[i]=rnd()%w;for(int i=0;i<=m;++i)b[i]=rnd()%w;sum[0]=b[0];for(int i=1;i<=n+m;i++) sum[i]=(1ll*sum[i-1]+b[i])%p;int l,r;for(int i=1;i<=q;++i){scanf("%d%d",&l,&r);printf("%lld\n",(gt(r)-gt(l-1)+p)%p);}return 0;
}
相关文章:
多校联测11 模板题
题目大意 给你四个整数 n , m , s e e d , w n,m,seed,w n,m,seed,w,其中 n , m n,m n,m为两个多项式 A ( x ) ∑ i 0 n a i x i A(x)\sum\limits_{i0}^na_ix^i A(x)i0∑naixi和 B ( x ) ∑ i 0 m b i x i B(x)\sum\limits_{i0}^mb_ix^i B(x)i0∑mbixi…...
Linux SSH连接远程服务器(免密登录、scp和sftp传输文件)
1 SSH简介 SSH(Secure Shell,安全外壳)是一种网络安全协议,通过加密和认证机制实现安全的访问和文件传输等业务。传统远程登录和文件传输方式,例如Telnet、FTP,使用明文传输数据,存在很多的安全…...
从0开始python学习-30.selenium frame子页面切换
目录 1. frame切换逻辑 2. 多层子页面情况进行切换 3. 多个子页面相互切换 1. frame切换逻辑 1.1. 子页面的类型一般分为两种 frame标签 iframe标签 1.2. 子页面里面的元素和主页面的元素是相互独立 子页面元素需要进去切换才能操作 如果已经进入子页面,那么…...
asp.net core 远程调试
大概说下过程: 1、站点发布使用Debug模式 2、拷贝到远程服务器,以及iis创建站点。 3、本地的VS2022的安装目录:C:\Program Files\Microsoft Visual Studio\2022\Professional\Common7\IDE下找Remote Debugger 你的服务器是64位就拷贝x64的目…...
Java spring boot 一次调用多个请求
Java Spring Boot是一种基于Java编程语言的开发框架,它提供了一种快速构建高效、可伸缩和易于维护的企业级应用程序的方式。在实际的应用开发中,我们常常需要调用多个独立的请求来完成某个业务功能。然而,传统的同步方式一次只能调用一个请求…...
DRM全解析 —— CRTC详解(4)
接前一篇文章:DRM全解析 —— CRTC详解(3) 本文继续对DRM中CRTC的核心结构struct drm_crtc的成员进行释义。 3. drm_crtc结构释义 (21)struct drm_object_properties properties /** properties: property tracking …...
六个为Rust构建的IDE
Rust语言的学习曲线适中,介于高级语言和低级语言之间。这门语言既能编写系统软件,将嵌入式设备编译为x86 ARM,也可以用于前端技术,这要归功于WebAssembly。 在日渐成熟的发展中,Rust开始拥有更好的工具来提高效率。最…...
25 Python的collections模块
概述 在上一节,我们介绍了Python的sqlite3模块,包括:sqlite3模块中一些常用的函数和类。在这一节,我们将介绍Python的collections模块。collections模块是Python中的内置模块,它实现了特殊的容器数据类型,提…...
JEPG Encoder IP verilog设计及实现
总体介绍: 采用通用的常规 Verilog 代码编写,可用于任何 FPGA。 该内核不依赖任何专有 IP 内核,而是用 Verilog 编写了实现 JPEG 编码器所需的所有功能,代码完全独立。 编码器内核的输入是一条 24 位数据总线,红色像素、绿色像素和蓝色像素各有 8 位。 信号 "data_i…...
yolov5 web端部署进行图片和视频检测
目录 1、思路 2、代码结构 3、代码运行 4、api接口代码 5、web ui界面 6、参考资料 7、代码分享 1、思路 通过搭建flask微型服务器后端,以后通过vue搭建网页前端。flask是第一个第三方库。与其他模块一样,安装时可以直接使用python的pip命令实现…...
嵌入式养成计划-34--函数库
七十二、 函数库 1. 库的概念 库是一个二进制可执行文件,与二进制可执行程序比较,库是不能单独运行的。 库中存放的是功能函数,没有主函数(main函数) 库需要被载入到内存中使用 标准的基础库中存放了很多已经写好的…...
PM864AK01-eA 3BSE018161R2 工业人工智能供应链先驱
PM864AK01-eA 3BSE018161R2 工业人工智能供应链先驱 吞吐量和Macnica Networks的战略合作伙伴关系将使Macnica Networks的客户能够加速和量化智能工厂计划的投资回报(ROI)。高管、经理和运营负责人可以使用Macnica Networks领先的制造场所数据收集平台和ThroughPut基于约束理论…...
参与现场问题解决总结(Kafka、Hbase)
一. 背景 Kafka和Hbase在现场应用广泛,现场问题也较多,本季度通过对现场问题就行跟踪和总结,同时结合一些调研,尝试提高难点问题的解决效率,从而提高客户和现场满意度。非难点问题(历史遇到过问题…...
基于PSD-ML算法的语音增强算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1.加窗处理: 2.分帧处理: 3.功率谱密度估计: 4.滤波处理: 5.逆变换处理: 6.合并处理: 5.算法完整程序工程 1.算法…...
【1++的Linux】之文件(一)
👍作者主页:进击的1 🤩 专栏链接:【1的Linux】 文章目录 一,初识文件二,文件接口 一,初识文件 文件就是文件内容属性。因此对文件的操作无非就是对文件内容的操作和对文件属性的操作。 我们访问…...
Kafka 高可用
正文 一、高可用的由来 1.1 为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费,这与Kafka数据持久性及Delivery Guarantee的设计目标相悖。同时Pr…...
关于分布式操作系统
关于分布式操作系统,如果你不太理解的话,可以把它看成是传统操作系统延展。二者的区别在于,传统的操作系统都是单机系统,只能在一台计算机上运行,而分布式操作系统是多机系统,每台计算机都是系统中的一个计…...
Pytorch使用DataLoader, num_workers!=0时的内存泄露
描述一下背景,和遇到的问题: 我在做一个超大数据集的多分类,设备Ubuntu 22.04i9 13900KNvidia 409064GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。…...
chromedriver下载与安装方法
下载与安装: 1.查看Chrome浏览器版本 首先,需要检查Chrome浏览器的版本。请按照以下步骤进行: 打开Chrome浏览器。 点击浏览器右上角的菜单图标(三个垂直点)。 选择“帮助”(Help)。 在下拉菜单中选择“…...
数据库查询详解
数据库查询操作 前置:首先我们创建一个练习的数据库 /* SQLyog Professional v12.09 (64 bit) MySQL - 5.6.40-log : Database - studentsys ********************************************************************* *//*!40101 SET NAMES utf8 */;/*!40101 SET …...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
