当前位置: 首页 > news >正文

第85步 时间序列建模实战:CNN回归建模

基于WIN10的64位系统演示

一、写在前面

这一期,我们介绍CNN回归。

同样,这里使用这个数据:

《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热月发病率。运用2004年1月至2011年12月的数据预测2012年12个月的发病率数据。

二、CNN回归

(1)原理

卷积神经网络(CNN)最初是为图像识别和处理而设计的,但它们已经被证明对于各种类型的序列数据,包括时间序列,也是有效的。以下是一些关于CNN在时间序列预测中应用的原理:

(a)局部感受野:

-CNN的关键特点是它的局部感受野,这意味着每个卷积核只查看输入数据的一个小部分。

-对于时间序列,这意味着CNN可以捕获和学习模式中的短期依赖关系或周期性。

-这类似于在时间序列分析中使用滑动窗口来捕获短期模式。

(b)参数共享:

-在CNN中,卷积核的权重在输入的所有部分上都是共享的。

-这意味着网络可以在时间序列的任何位置都识别出相同的模式,增加了其泛化能力。

(c)多尺度特征捕获:

-通过使用多个卷积层和池化层,CNN能够在不同的时间尺度上捕获模式。

-这使得它们能够捕获长期和短期的时间序列依赖关系。

(d)堆叠结构:

多层的CNN结构使得网络可以学习时间序列中的复杂和抽象的模式。例如,第一层可能会捕获简单的趋势或周期性,而更深层的网络可能会捕获更复杂的季节性模式或其他非线性关系。

(e)自动特征学习:

-传统的时间序列分析方法通常需要手动选择和构造特征。

-使用CNN,网络可以自动从原始数据中学习和提取相关特征,这通常导致更好的性能和更少的手工工作。

(f)时间序列的结构化特征:

-和图像数据一样,时间序列数据也具有结构性。例如,过去的观察结果通常影响未来的观察结果。

-CNN利用这种结构性,通过卷积操作从数据中提取局部和全局的时间模式。

总之,虽然CNN最初是为图像设计的,但它们在处理序列数据,特别是时间序列数据时,已经显示出了很强的潜力。这是因为它们可以自动从数据中学习重要的特征,捕获多种尺度的模式,并适应时间序列中的短期和长期依赖关系。

(2)单步滚动预测

import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
from tensorflow.python.keras.optimizers import adam_v2# 读取数据
data = pd.read_csv('data.csv')# 将时间列转换为日期格式
data['time'] = pd.to_datetime(data['time'], format='%b-%y')# 创建滞后期特征
lag_period = 6
for i in range(lag_period, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(lag_period - i + 1)# 删除包含 NaN 的行
data = data.dropna().reset_index(drop=True)# 划分训练集和验证集
train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]# 定义特征和目标变量
X_train = train_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']].values
y_train = train_data['incidence'].values
X_validation = validation_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']].values
y_validation = validation_data['incidence'].values# 对于CNN,我们需要将输入数据重塑为3D格式 [samples, timesteps, features]
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1)# 构建CNN模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(1))model.compile(optimizer=adam_v2.Adam(learning_rate=0.001), loss='mse')# 训练模型
history = model.fit(X_train, y_train, epochs=200, batch_size=32, validation_data=(X_validation, y_validation), verbose=0)# 单步滚动预测函数
def rolling_forecast(model, initial_features, n_forecasts):forecasts = []current_features = initial_features.copy()for i in range(n_forecasts):# 使用当前的特征进行预测forecast = model.predict(current_features.reshape(1, len(current_features), 1)).flatten()[0]forecasts.append(forecast)# 更新特征,用新的预测值替换最旧的特征current_features = np.roll(current_features, shift=-1)current_features[-1] = forecastreturn np.array(forecasts)# 使用训练集的最后6个数据点作为初始特征
initial_features = X_train[-1].flatten()# 使用单步滚动预测方法预测验证集
y_validation_pred = rolling_forecast(model, initial_features, len(X_validation))# 计算训练集上的MAE, MAPE, MSE 和 RMSE
mae_train = mean_absolute_error(y_train, model.predict(X_train).flatten())
mape_train = np.mean(np.abs((y_train - model.predict(X_train).flatten()) / y_train))
mse_train = mean_squared_error(y_train, model.predict(X_train).flatten())
rmse_train = np.sqrt(mse_train)# 计算验证集上的MAE, MAPE, MSE 和 RMSE
mae_validation = mean_absolute_error(y_validation, y_validation_pred)
mape_validation = np.mean(np.abs((y_validation - y_validation_pred) / y_validation))
mse_validation = mean_squared_error(y_validation, y_validation_pred)
rmse_validation = np.sqrt(mse_validation)print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
print("训练集:", mae_train, mape_train, mse_train, rmse_train)

看结果:

(3)多步滚动预测-vol. 1

import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
from tensorflow.python.keras.optimizers import adam_v2# 读取数据
data = pd.read_csv('data.csv')
data['time'] = pd.to_datetime(data['time'], format='%b-%y')n = 6
m = 2# 创建滞后期特征
for i in range(n, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)data = data.dropna().reset_index(drop=True)train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]# 准备训练数据
X_train = []
y_train = []for i in range(len(train_data) - n - m + 1):X_train.append(train_data.iloc[i+n-1][[f'lag_{j}' for j in range(1, n+1)]].values)y_train.append(train_data.iloc[i+n:i+n+m]['incidence'].values)X_train = np.array(X_train)
y_train = np.array(y_train)
X_train = X_train.astype(np.float32)
y_train = y_train.astype(np.float32)# 为CNN准备数据
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)# 构建CNN模型
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(m))model.compile(optimizer=adam_v2.Adam(learning_rate=0.001), loss='mse')# 训练模型
model.fit(X_train, y_train, epochs=200, batch_size=32, verbose=0)def cnn_rolling_forecast(data, model, n, m):y_pred = []for i in range(len(data) - n):input_data = data.iloc[i+n-1][[f'lag_{j}' for j in range(1, n+1)]].values.astype(np.float32).reshape(1, n, 1)pred = model.predict(input_data)y_pred.extend(pred[0])# Handle overlapping predictions by averagingfor i in range(1, m):for j in range(len(y_pred) - i):y_pred[j+i] = (y_pred[j+i] + y_pred[j]) / 2return np.array(y_pred)# Predict for train_data and validation_data
y_train_pred_cnn = cnn_rolling_forecast(train_data, model, n, m)[:len(y_train)]
y_validation_pred_cnn = cnn_rolling_forecast(validation_data, model, n, m)[:len(validation_data) - n]# Calculate performance metrics for train_data
mae_train = mean_absolute_error(train_data['incidence'].values[n:len(y_train_pred_cnn)+n], y_train_pred_cnn)
mape_train = np.mean(np.abs((train_data['incidence'].values[n:len(y_train_pred_cnn)+n] - y_train_pred_cnn) / train_data['incidence'].values[n:len(y_train_pred_cnn)+n]))
mse_train = mean_squared_error(train_data['incidence'].values[n:len(y_train_pred_cnn)+n], y_train_pred_cnn)
rmse_train = np.sqrt(mse_train)# Calculate performance metrics for validation_data
mae_validation = mean_absolute_error(validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n], y_validation_pred_cnn)
mape_validation = np.mean(np.abs((validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n] - y_validation_pred_cnn) / validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n]))
mse_validation = mean_squared_error(validation_data['incidence'].values[n:len(y_validation_pred_cnn)+n], y_validation_pred_cnn)
rmse_validation = np.sqrt(mse_validation)print("训练集:", mae_train, mape_train, mse_train, rmse_train)
print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)

结果:

(4)多步滚动预测-vol. 2

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
from tensorflow.python.keras.optimizers import adam_v2# Loading and preprocessing the data
data = pd.read_csv('data.csv')
data['time'] = pd.to_datetime(data['time'], format='%b-%y')n = 6  # 使用前6个数据点
m = 2  # 预测接下来的2个数据点# 创建滞后期特征
for i in range(n, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)data = data.dropna().reset_index(drop=True)train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]# 只对X_train、y_train、X_validation取奇数行
X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]].iloc[::2].reset_index(drop=True).values
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)  # Reshape for CNN# 创建m个目标变量
y_train_list = [train_data['incidence'].shift(-i) for i in range(m)]
y_train = pd.concat(y_train_list, axis=1)
y_train.columns = [f'target_{i+1}' for i in range(m)]
y_train = y_train.iloc[::2].reset_index(drop=True).dropna().values[:, 0]  # Only take the first column for simplicityX_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]].iloc[::2].reset_index(drop=True).values
X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1)  # Reshape for CNNy_validation = validation_data['incidence'].values# Building the CNN model
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], 1)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(1))optimizer = adam_v2.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss='mse')# Train the model
model.fit(X_train, y_train, epochs=200, batch_size=32, verbose=0)# Predict on validation set
y_validation_pred = model.predict(X_validation).flatten()# Compute metrics for validation set
mae_validation = mean_absolute_error(y_validation[:len(y_validation_pred)], y_validation_pred)
mape_validation = np.mean(np.abs((y_validation[:len(y_validation_pred)] - y_validation_pred) / y_validation[:len(y_validation_pred)]))
mse_validation = mean_squared_error(y_validation[:len(y_validation_pred)], y_validation_pred)
rmse_validation = np.sqrt(mse_validation)# Predict on training set
y_train_pred = model.predict(X_train).flatten()# Compute metrics for training set
mae_train = mean_absolute_error(y_train, y_train_pred)
mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train))
mse_train = mean_squared_error(y_train, y_train_pred)
rmse_train = np.sqrt(mse_train)print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
print("训练集:", mae_train, mape_train, mse_train, rmse_train)

结果:

(5)多步滚动预测-vol. 3

import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Conv1D, Flatten, MaxPooling1D
from tensorflow.python.keras.optimizers import adam_v2# 数据读取和预处理
data = pd.read_csv('data.csv')
data_y = pd.read_csv('data.csv')
data['time'] = pd.to_datetime(data['time'], format='%b-%y')
data_y['time'] = pd.to_datetime(data_y['time'], format='%b-%y')n = 6for i in range(n, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)data = data.dropna().reset_index(drop=True)
train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]]
m = 3X_train_list = []
y_train_list = []for i in range(m):X_temp = X_trainy_temp = data_y['incidence'].iloc[n + i:len(data_y) - m + 1 + i]X_train_list.append(X_temp)y_train_list.append(y_temp)for i in range(m):X_train_list[i] = X_train_list[i].iloc[:-(m-1)].valuesX_train_list[i] = X_train_list[i].reshape(X_train_list[i].shape[0], X_train_list[i].shape[1], 1)  # Reshape for CNNy_train_list[i] = y_train_list[i].iloc[:len(X_train_list[i])].values# 模型训练
models = []
for i in range(m):# Build CNN modelmodel = Sequential()model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train_list[i].shape[1], 1)))model.add(MaxPooling1D(pool_size=2))model.add(Flatten())model.add(Dense(50, activation='relu'))model.add(Dense(1))optimizer = adam_v2.Adam(learning_rate=0.001)model.compile(optimizer=optimizer, loss='mse')model.fit(X_train_list[i], y_train_list[i], epochs=200, batch_size=32, verbose=0)models.append(model)validation_start_time = train_data['time'].iloc[-1] + pd.DateOffset(months=1)
validation_data = data[data['time'] >= validation_start_time]
X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]].values
X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], 1)  # Reshape for CNNy_validation_pred_list = [model.predict(X_validation) for model in models]
y_train_pred_list = [model.predict(X_train_list[i]) for i, model in enumerate(models)]def concatenate_predictions(pred_list):concatenated = []for j in range(len(pred_list[0])):for i in range(m):concatenated.append(pred_list[i][j])return concatenatedy_validation_pred = np.array(concatenate_predictions(y_validation_pred_list))[:len(validation_data['incidence'])]
y_train_pred = np.array(concatenate_predictions(y_train_pred_list))[:len(train_data['incidence']) - m + 1]
y_validation_pred = y_validation_pred.flatten()
y_train_pred = y_train_pred.flatten()mae_validation = mean_absolute_error(validation_data['incidence'], y_validation_pred)
mape_validation = np.mean(np.abs((validation_data['incidence'] - y_validation_pred) / validation_data['incidence']))
mse_validation = mean_squared_error(validation_data['incidence'], y_validation_pred)
rmse_validation = np.sqrt(mse_validation)mae_train = mean_absolute_error(train_data['incidence'][:-(m-1)], y_train_pred)
mape_train = np.mean(np.abs((train_data['incidence'][:-(m-1)] - y_train_pred) / train_data['incidence'][:-(m-1)]))
mse_train = mean_squared_error(train_data['incidence'][:-(m-1)], y_train_pred)
rmse_train = np.sqrt(mse_train)print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)
print("训练集:", mae_train, mape_train, mse_train, rmse_train)

结果:

三、写在后面

本例中,我们只搭建了一个简单的CNN网络。具体实践中,大家可以换成其他的CNN网络结构,甚至是之前介绍的各种预训练模型,VGG19和各种Net系列,可能有惊喜或者惊吓哦。

四、数据

链接:https://pan.baidu.com/s/1EFaWfHoG14h15KCEhn1STg?pwd=q41n

提取码:q41n

相关文章:

第85步 时间序列建模实战:CNN回归建模

基于WIN10的64位系统演示 一、写在前面 这一期&#xff0c;我们介绍CNN回归。 同样&#xff0c;这里使用这个数据&#xff1a; 《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome i…...

【MATLAB源码-第36期】matlab基于BD,SVD,ZF,MMSE,MF,SLNR预编码的MIMO系统误码率分析。

1、算法描述 1. MIMO (多输入多输出)&#xff1a;这是一个无线通信系统中使用的技术&#xff0c;其中有多个发送和接收天线。通过同时发送和接收多个数据流&#xff0c;MIMO可以增加数据速率和系统容量&#xff0c;同时提高信号的可靠性。 2. BD (块对角化)&#xff1a;这是一…...

Uniapp 新手专用 抖音登录 获取用户头像、名称、openid、unionid、anonymous_openid、session_key

TC-dylogin 一定请选择 源码授权版 教程 第一步 将代码拷贝至您所需要的页面 该代码位置&#xff1a;pages/index.vue 第二步 修改appid和secret 第三步 获取appid和secret 获取appid和secret链接 注意事项 为了安全&#xff0c;我将默认的自己的appid和secret在云函数中删…...

openssl引擎开发踩坑小记

前言 在开发openssl引擎过程中&#xff0c;引擎莫名其妙的加载不上&#xff0c;错误如下图&#xff1a; 大概意思就是加载引擎动态库时失败了。 在网上一顿搜索后&#xff0c;也没找到想要的答案。 原因 许多引擎都是基于第三方动态库开发的&#xff0c;引擎本身在开发时&a…...

ubuntu 设置x11vnc服务

Ubuntu 18.04 设置x11vnc服务 自带的vino-server也可以用但是不好用&#xff0c;在ubuntu论坛上看见推荐的x11vnc&#xff08;ubuntu关于vnc的帮助页面&#xff09;&#xff0c;使用设置一下&#xff0c;结果发现有一些坑需要填&#xff0c;所以写下来方便下次使用 转载请说明…...

物理备份xtrabackup

物理备份&#xff1a; 直接复制数据库文件&#xff0c;适用于大型数据库环境&#xff0c;不受存储引擎的限制&#xff0c;但不能恢复到不同的MySQL版本。 1.完全备份-----完整备份&#xff1a; 每次都将所有数据&#xff08;不管自第一次备份以来有没有修改过&#xff09;&am…...

1.springcloudalibaba nacos2.2.3部署

前言 nacos是springcloudalibaba体系的注册中心&#xff0c;演示如何搭建最新稳定版本的linux搭建。 前置条件&#xff0c;安装好jdk1.8 一、二进制压缩包下载 1.1 下载压缩包 nacos下载 点击下载下载后得到二进制包如下 nacos-2.2.3.tar.gz二、安装步骤 2.1.解压二进制…...

Linux 查看是否安装memcached

telnet 127.0.0.1 11211这样的命令连接上memcache&#xff0c;然后直接输入stats就可以得到memcache服务器的版本 安装memcached &#xff1a; sudo apt-get install memcached...

设计模式14、命令模式 Command

解释说明&#xff1a;命令模式&#xff08;Command Pattern&#xff09;是一种数据驱动的设计模式&#xff0c;它属于行为型模式。请求以命令的形式包裹在对象中&#xff0c;并传递给调用对象。调用对象寻找可以处理该命令的合适对象&#xff0c;并把该命令传给相应的对象&…...

【Go】excelize库实现excel导入导出封装(一),自定义导出样式、隔行背景色、自适应行高、动态导出指定列、动态更改表头

前言 最近在学go操作excel&#xff0c;毕竟在web开发里&#xff0c;操作excel是非常非常常见的。这里我选择用 excelize 库来实现操作excel。 为了方便和通用&#xff0c;我们需要把导入导出进行封装&#xff0c;这样以后就可以很方便的拿来用&#xff0c;或者进行扩展。 我参…...

【开发篇】二十、SpringBoot整合RocketMQ

文章目录 1、整合2、消息的生产3、消费4、发送异步消息5、补充&#xff1a;安装RocketMQ 1、整合 首先导入起步依赖&#xff0c;RocketMQ的starter不是Spring维护的&#xff0c;这一点从starter的命名可以看出来&#xff08;不是spring-boot-starter-xxx&#xff0c;而是xxx-s…...

OpenCV实现求解单目相机位姿

单目相机通过对极约束来求解相机运动的位姿。参考了ORBSLAM中单目实现的代码&#xff0c;这里用opencv来实现最简单的位姿估计. mLeftImg cv::imread(lImg, cv::IMREAD_GRAYSCALE); mRightImg cv::imread(rImg, cv::IMREAD_GRAYSCALE); cv::Ptr<ORB> OrbLeftExtractor …...

深入解析PostgreSQL:命令和语法详解及使用指南

文章目录 摘要引言基本操作安装与配置连接和退出 数据库操作创建数据库删除数据库切换数据库 表操作创建表删除表插入数据查询数据更新数据删除数据 索引和约束创建索引创建约束 用户管理创建用户授权用户修改用户密码 备份和恢复备份数据库恢复数据库 高级特性结语参考文献 摘…...

Elasticsearch数据搜索原理

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎&#xff0c;设计用于云计算环境中&#xff0c;能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性&#xff0c;可以在短时间内搜索和分析大量数据。 Elasticsearch 不仅仅是一个…...

vue模版语法-{{}}/v-text/v-html/v-once

一、{{}}双括号&#xff1a;用于文本渲染 1、 {{变量名}}:data中返回对象的变量名 2、{{js表达式}}:可以直接进行js表达式处理 3、注意&#xff1a;双大括号中不要写等式书写 二、v-text 指令&#xff0c;用于文本渲染 1、为了解决双大括号渲染数据出现闪烁问题 三、v-cloak …...

前端埋点上传

没事看看&#xff1a; 从用户行为到数据&#xff1a;数据采集全景解析 | 人人都是产品经理 搭建前端监控&#xff0c;采集用户行为的 N 种姿势-前端监控设备 创业公司做数据分析&#xff08;三&#xff09;用户行为数据采集系统-CSDN博客...

第11章 Redis(一)

11.1 谈谈你对Redis的理解 难度:★★★ 重点:★★ 白话解析 对Redis的理解无非从三个方面去说一说:背景,是什么,特性。 背景:数据直接存磁盘太慢了,虽然MySQL用到了BufferPool等缓存,但是为了保证数据不丢失,MySQL采用的RedoLog依然要直接写磁盘。所以,数据的存储就…...

freertos信号量之二值信号量

freertos信号量之二值信号量 简介例程 简介 FreeRTOS的二值信号量&#xff08;Binary Semaphore&#xff09;是用于实现进程间同步和临界资源保护的重要工具。以下是一些二值信号量的常用函数及其说明&#xff1a; 1&#xff09;xSemaphoreCreateBinary() 创建一个二值信号量…...

notepad++ 如何去除换行

选中下方的“扩展” “查找目标”输入&#xff1a;\r\n&#xff0c;替换为:空白 最后全部替换。...

PPT NO.2 ​插入透明校徽

插入透明校徽&#xff1a; ①先下载一个校徽&#xff1a; ​ ②用矢量网站转换一下&#xff0c;这个免费的&#xff0c;很多其他的要钱钱&#xff1a; 位图转矢量图,JPG转矢量,PNG转矢量,GIF转矢量,BMP转矢量 - 在线工具 - 字客网 (fontke.com) 转换完了如下&#xff1a; 打…...

Linux系统部署PostgreSQL 单机数据库

安装方式 1 安装包方式 &#xff08;Packages and Installers&#xff09; 支持的操作系统包括 liunxMacosWindowsBSDSolaris 2 源码安装 &#xff08;Source code&#xff09; 下载源码包 通过下载地址PostgreSQL: File Browser 可以看到有各个版本的源码目录 选择13.1…...

好用的办公摸鱼神器

http://t.chaojizhu.cn/fawork/Down?uid180819...

手写Java序列化工具

一、思考 假设给一个java bean&#xff0c;让你按照 json 的格式打印出来&#xff0c;你会怎么做&#xff1f; 比如这个java bean 长这样&#xff0c;并且创建了一个叫宝儿姐的朋友 package com.test;public class User {private String name;private Integer age;private Bi…...

mysql面试题26:MySQL中什么是MVCC,它的底层原理是什么

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:什么是MVCC,它的底层原理是什么? MVCC(Multi-Version Concurrency Control)是一种并发控制机制,用于在数据库中实现并发事务的隔离性和一致性…...

SQL进阶 - SQL的编程规范

性能优化是一个很有趣的探索方向&#xff0c;将耗时耗资源的查询优化下来也是一件很有成就感的事情&#xff0c;但既然编程是一种沟通手段&#xff0c;那每一个数据开发者就都有义务保证写出的代码逻辑清晰&#xff0c;具有很好的可读性。 目录 引子 小试牛刀 答案 引言 …...

[NISACTF 2022]babyserialize - 反序列化+waf绕过【*】

[NISACTF 2022]babyserialize 一、解题过程二、思考总结&#xff08;一&#xff09;、关于题目的小细节&#xff08;二&#xff09;、关于弱类型比较技巧 一、解题过程 题目代码&#xff1a; <?php include "waf.php"; class NISA{public $fun"show_me_fl…...

docker部署Vaultwarden密码共享管理系统

Vaultwarden是一个开源的密码管理器&#xff0c;它是Bitwarden密码管理器的自托管版本。它提供了类似于Bitwarden的功能&#xff0c;允许用户安全地存储和管理密码、敏感数据和身份信息。 Vaultwarden的主要特点包括&#xff1a; 1. 安全的数据存储&#xff1a;Vaultwarden使…...

低代码开发技术选型

低代码的技术路径 低代码开发低代码开发优势低代码的技术路径1.表格驱动2.表单驱动3.数据模型4.领域模型 低代码的核心能力企业级低代码开发平台的11项关键能力低代码平台的流程引擎选型低代码平台的流程设计器选型低代码平台的表单设计器选型低代码平台的Vue.js 框架选型 低代…...

在vue2中,v-model和.sync的区别

最近在封装一个弹窗组件时&#xff0c;用了比较复杂的逻辑去做显示和隐藏的逻辑&#xff0c;在查看同事的代码之后&#xff0c;才知道还有更简单的方法&#xff0c;自己已经忘了一些API. popup组件里统一的template&#xff1a; <div v-ifisShowPopup> // 弹窗内容 <…...

nginx 配置

一、nginx安装 下载地址&#xff1a;http://nginx.org/en/download.html&#xff0c;和Keepalived搭配使用&#xff0c;防止nginx挂掉 二、nginx配置 ########### 每个指令必须有分号结束。################# #user administrator administrators; #配置用户或者组&#xf…...

做木业网站怎样起名/优秀软文营销案例

把网页的请求的js文件保存到本地并修改&#xff0c;使用fiddler拦截原来的请求&#xff0c;替换为本地的js文件...

好用的wordpress企业模版/百度官网下载

一个项目只有一给仓库&#xff0c;状态也只能有一个&#xff0c;但是组件会非常之多&#xff0c;我们为了每个组件的共享状态便于统一管理&#xff0c;需要将多个reducer进行合并 export default function combineReducers(reducers) {const reducerKeys Object.keys(reducer…...

照片管理网站模板下载/网站设计需要什么

开发工具是Android Studio&#xff0c;实现了一个中英互译的安卓app&#xff0c;调用科大讯飞的语音识别、语音合成api以及百度翻译api,需要科大讯飞的appid,以及百度翻译的appid和密钥。 App运行截图&#xff1a; 科大讯飞的语音识别、语音合成api调用流程(SDK调用方式)&#…...

川沙网站建设/最新新闻热点事件

导 读&#xff1a;server.htmlencode 和 server.urlencode 是asp中很常用的函数&#xff0c;在asp.net中也有类似的函数&#xff1a;htmlencode 和 urlencode (注意大小写)以下用实例来进行介绍。server.htmlencode and server.urlencode are very common functions used by as…...

浙江广厦建设职业技术学院招生网站/长尾关键词爱站网

1、确认系统已经安装了SSH。rpm –qa | grep opensshyum install ssh -y ##安装SSH协议2、生成秘钥对ssh-keygen -t rsa -P ##直接回车生成的密钥对&#xff1a;id_rsa和id_rsa.pub&#xff0c;默认存储在用户的目录下 如&#xff1a;/home/oldboy/.ssh。 如下&#xff1…...

自己做h5网站/全国疫情高峰感染高峰

与Non-mutating Algorithms相比&#xff0c;变易算法能修改容器元素数据&#xff0c;可进行序列数据的复制、交换、替换、填充、移除、旋转、随机抖动、分割。还是参考叶至军的那本书以及网站Cplusplus.com copy 元素复制。该函数用于容器间元素拷贝&#xff0c;将迭代器区间[…...