当前位置: 首页 > news >正文

树的基本概念及二叉树

目录

一、树的基本概念

(1)树的结点

(2)度

(3)结点层次

(4)树的高度 

树的特点: 

二、二叉树

(1)满二叉树

(2)完全二叉树 

三、二叉树的存储 

(1)顺序存储

(2)链式存储 

四、二叉树的遍历

(1)前序遍历

(2)中序遍历 

 (3)后序遍历

 (4)层序遍历


 

树是一种非线性的数据结构,存储具有“一对多”关系特点元素的一种数据结构。例如:组织架构、图书目录、商品种类、热点搜索词等。

如图所示就是一个 树 ,对数据A来说,和数据C、F有关系;对于数据F来说,和数据H、G有关系。这就是“一对多”的关系。 

将具有“一对多”关系的集合中的数据元素按照树的形式进行存储,整个存储形状在逻辑结构上看,类似于实际生活中倒着的树,所以称这种数据的存储结构称为“树”。

一、树的基本概念

树是一种非线性的数据结构,包含n个结点的有限集合,结点之间具备一对多的逻辑关系,当树的结点n=0时,该树被称为空树。

(1)树的结点

树结构中,存储的每一个数据元素都被称为树的“结点”。

结点又被细分为:根节点、子节点、叶子结点

 如图所示:叶子结点即树的末端结点,属于没有子结点的结点,统一称为叶子结点。

子树:由某个子结点作为根结点组成的树被称为子树。上图中红色部分就是一个子树。

(2)度

对于一个结点,拥有的子树个数(结点有多少分支)称为结点的度

树的度:一颗树的度是树内各结点的度的最大值。

(3)结点层次

从一棵树的根结点开始,根结点所在层为第一层,根结点的子结点所在层为第二层,依次类推

(4)树的高度 

一棵树的高度是树中结点所在的最大层次。树的高度,也被称为树的深度。

树的特点: 

在任意一个非空树中,有以下特点:

1.有且仅有一个根结点

2.一棵树中的任意两个结点,有且仅有唯一的一条路径连通,不存在回路。

3.一棵树如果有n个结点,那么它一定有n-1条边

二、二叉树

二叉树是一种结点的度不大于2的有序树,子结点通常被称为“左孩子结点”和“右孩子结点”。

 如图所示就是一个二叉树

 这个图中树的度为3,所以此树就不是一个二叉树

二叉树又被分为满二叉树完全二叉树 

(1)满二叉树

满二叉树是一种特殊的二叉树,它的所有非叶子节点都存在左右子结点,并且所有的叶子结点都在同一层级

image.png

满二叉树的特点:

(2)完全二叉树 

如果二叉树中,从根结点到倒数第二层,符合满二叉树要求,其叶子结点可以不完全填充,但必须靠从左到右连续分布,这样的二叉树被称为完全二叉树。

image.png

三、二叉树的存储 

(1)顺序存储

顺序存储指的是使用顺序表(数组)存储二叉树。但是顺序存储只适用于完全二叉树。满二叉树也是完全二叉树,所以同样适用。

在顺序存储中,顺序表中的每一个位置仅存储结点的data,不需要存储左右子结点的指针,子结点的索引通过计算父结点下标完成。

如果一个父结点的下标为parentIndex它的左结点下标为:2parentIndex,  右子结点下标为:2parentIndex+1

如果完全二叉树,使用数组顺序存储,可以完全利用数组空间

完全二叉树的顺序存储.png

如果是普通二叉树,使用数组顺序存储,在数组中就会出现空隙,导致内存利用率降低

二叉树的顺序存储.png

//基于数组(顺序存储)的二叉树
public class BinaryTree1<E> {
//	创建一个新的空数组用来存储二叉树private Object[] elementData=null;
//	进行初始化操作public BinaryTree1(E[] elements) {
//		新数组的长度要比放入数据的数组长度大一个,因为新数组中从下标为1开始存储elementData=new Object[elements.length+1];for(int i=0,index=1;i<elements.length;i++,index++) {elementData[index]=elements[i];}}
//	获取指定下标处的元素public E get(int index) {return (E) elementData[index];}//	获取指定下标的左孩子public E left(int index) throws Exception {
//		index<<1  即2倍的index,一个子节点的下标的二倍是他的左孩子结点,如果2倍的index大于等于数组长度则没有左子孩子if((index<<1)>=elementData.length) {throw new Exception("没有左孩子");}return (E) elementData[index<<1];}//	获取指定下标的右孩子public E right(int index) throws Exception {if((index<<1)+1>=elementData.length) {throw new Exception("没有右孩子");}return (E) elementData[(index<<1)+1];}}

(2)链式存储 

二叉树的链式存储依靠指针将各个结点串联起来,不需要连续的存储空间。

每个结点包括3个属性:

  • 数据 Data
  • 左孩子结点指针 Left
  • 右孩子结点 Right

链式存储二叉树.png

//二叉树的链式存储
public class BinaryTree<E> {
//	根节点TreeNode<E> root;public BinaryTree(E val) {root=new TreeNode<E>(val);}
//	结点类static class TreeNode<E>{E data;TreeNode<E> left;TreeNode<E> right;public TreeNode() {}public TreeNode(E val) {this.data=val;}}public TreeNode<E> left(TreeNode<E> parent,E val){TreeNode<E> newNode=new TreeNode<E>(val);parent.left=newNode;return newNode;}public TreeNode<E> right(TreeNode<E> parent,E val){TreeNode<E> newNode=new TreeNode<E>(val);parent.right=newNode;return newNode;}}

四、二叉树的遍历

前序遍历根结点->左子树->右子树
中序遍历左子树->根结点->右子树
后序遍历左子树->右子树->根结点

(1)前序遍历

先序遍历.png

	public static void preOrder(TreeNode root) {if(root==null) {return;}System.out.print(root.data);preOrder(root.left);preOrder(root.right);}

(2)中序遍历 

中序遍历.png

public static void inOrder(TreeNode root) {if(root==null) {return;}inOrder(root.left);System.out.print(root.data);inOrder(root.right);}

 (3)后序遍历

后序遍历.png

public static void postOrder(TreeNode root) {if(root==null) {return;}postOrder(root.left);postOrder(root.right);System.out.print(root.data);}

 (4)层序遍历

层序遍历,就是按二叉树从上到下,从左到右,依次打印每层中每个结点存储的数据

image.png

public static void levelOrder(TreeNode root) {if(root==null) {return;}Queue<TreeNode> queue=new LinkedList<TreeNode>();queue.offer(root);while(true) {TreeNode t=queue.poll();if(t==null) {break;}
//访问当前节点,就用打印表示访问即可System.out.print(t.data);if(t.left!=null) {queue.offer(t.left);}if(t.right!=null) {queue.offer(t.right);}}}

 

相关文章:

树的基本概念及二叉树

目录 一、树的基本概念 &#xff08;1&#xff09;树的结点 &#xff08;2&#xff09;度 &#xff08;3&#xff09;结点层次 &#xff08;4&#xff09;树的高度 树的特点&#xff1a; 二、二叉树 &#xff08;1&#xff09;满二叉树 &#xff08;2&#xff09;完…...

BUUCTF Basic 解题记录--BUU XXE COURSE

1、XXE漏洞 初步学习&#xff0c;可参考链接&#xff1a; 一篇文章带你深入理解漏洞之 XXE 漏洞 - 先知社区 2、了解了XXE漏洞&#xff0c;用burpsuite获取到的url转发给repeater&#xff0c;修改XML的信息&#xff0c;引入外部实体漏洞&#xff0c;修改发送内容&#xff0c;…...

kotlin:LogKit

看到别人的一个代码&#xff0c;觉得有点意思&#xff0c;就复制过来。 package robatimport android.util.Log import java.util.*object LogKit {private val MIN_STACK_OFFSET 3var defaultTag "LogKit"private val lineSeparator System.getProperty("l…...

yolo_tracking中osnet不支持.pth格式,而model_zoo中仅有.pth

yolo_traking-7.0中REID模块用到了osnet&#xff0c;track.py中模型文件不支持.pth&#xff0c;而model_zoo中仅有.pth&#xff0c;改动代码太麻烦了&#xff0c;网上查到的.pth文件转化为.pt文件都需要读取网络架构&#xff0c;不太可能实现。 读取osnet_x0_25_msmt17.pth发现…...

Tailwind CSS浅析与实操

Tailwind CSS 一、Tailwind CSS简介 What is Tailwind CSS Tailwind CSS| TailwindCSS中文文档 | TailwindCSS中文网官方解释&#xff1a;只需书写 HTML 代码&#xff0c;无需书写 CSS&#xff0c;即可快速构建美观的网站。本质上是一个工具集&#xff0c;包含了大量类似 fle…...

Activiti工作流引擎详解与应用

一、简介 Activiti是一个开源的工作流引擎&#xff0c;基于BPMN2.0标准进行流程定义。它可以将业务系统中复杂的业务流程抽取出来&#xff0c;使用专门的建模语言BPMN2.0进行定义&#xff0c;业务流程按照预先定义的流程进行执行&#xff0c;实现了系统的流程由Activiti进行管…...

New Journal of Physics:不同机器学习力场特征的准确性测试

文章信息 作者&#xff1a;Ting Han1, Jie Li1, Liping Liu2, Fengyu Li1, * and Lin-Wang Wang2, * 通信单位&#xff1a;内蒙古大学物理科学与技术学院、中国科学院半导体研究所 DOI&#xff1a;10.1088/1367-2630/acf2bb 研究背景 近年来&#xff0c;基于DFT数据的机器学…...

ubuntu22.04 x11窗口环境手势控制

ubuntu22.04 x11窗口环境手势控制 ubuntu x11窗口环境的手势控制并不优秀&#xff0c;我们可以使用touchegg去代替 这个配置过程非常简单&#xff0c;并且可以很容易在一定范围内达到你想到的效果&#xff0c;类比mac的手势控制 关于安装 首先添加源&#xff0c;并安装 sud…...

【ARM CoreLink 系列 4 -- NIC-400 控制器详细介绍】

文章目录 1.1 ARM NIC-400(Network interconnect)1.1.1 NIC-400 系统框图1.1.2 NIC-400 Network Interconnect1.2 NIC-400 特点1.2.1 QoS-400 Advanced Quality of Service1.2.2 QVN-400 QoS Virtual Networks1.2.3 TLX-400 Thin Links1.3 NIC-400 Top1.4 NIC-400 Terminology1…...

【生成模型】解决生成模型面对长尾类型物体时的问题 RE-IMAGEN: RETRIEVAL-AUGMENTED TEXT-TO-IMAGE GENERATOR

介绍 尽管最先进的模型可以生成常见实体的高质量图像&#xff0c;但它们通常难以生成不常见实体的图像&#xff0c;例如“Chortai&#xff08;狗&#xff09;”或“Picarones&#xff08;食物&#xff09;”。为了解决这个问题&#xff0c;我们提出了检索增强文本到图像生成器…...

南美巴西市场最全分析开发攻略,收藏一篇就够了

巴西位于南美洲东部&#xff0c;是南美洲资源最丰富&#xff0c;经济活力和经济实力最强的国家。巴西作为拉丁美洲的出口大国&#xff0c;一直是一个比较有潜力的市场&#xff0c;亦是我国外贸公司和独立外贸人集群的地方。中国长期是巴西主要的合作伙伴&#xff0c;2022年占巴…...

c++中操作符->与 . 的使用与区别

在C中&#xff0c;-> 和 . 是两个不同的成员访问操作符&#xff0c;用于访问类、结构体或联合体的成员。 “->” 操作符&#xff1a; 用于通过指针访问指针所指向对象的成员。当有一个指向对象的指针时&#xff0c;可以使用 -> 操作符来访问该指针所指向对象的成员。…...

golang 编译器 汉化

1、找到左上角file选项&#xff0c;点击选中settings进行单机 2、找到settings中找到plugins选中进行点击 3、再框中输入chinese进行搜索&#xff0c;出结果后找到如下图所示&#xff0c;点击进行安装 4、安装完成后进行重启ide&#xff0c;完美解决...

压缩包系列

1、zip伪加密 一个zip文件由三部分组成&#xff1a;压缩源文件数据区压缩源文件目录区压缩源文件目录结束标志。 伪加密原理&#xff1a;zip伪加密是在文件头中加密标志位做修改&#xff0c;然后在打开时误被识别成加密压缩包。 压缩源文件数据区&#xff1a; 50 4B 03 04&a…...

互联网图片安全风控实战训练营开营!

内容安全风控&#xff0c;即针对互联网产生的海量内容的外部、内部风险做宏观到微观的引导和审核&#xff0c;从内容安全领域帮助企业化解监管风险和社会舆论风险&#xff0c;其核心是识别文本、图片、视频、音频中的有害内容。 由于互联网内容类型繁杂、多如牛毛&#xff0c;加…...

炫酷转换:Java实现Excel转换为图片的方法

摘要&#xff1a;本文由葡萄城技术团队原创并首发。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 前言 在实际开发过程中&#xff0c;经常会有这样的需求&#xff1a;将Excel表格或特定区域转…...

vue elementui <el-date-picker>日期选择框限制只能选择90天内的日期(包括今天)

之前也写过其他限制日期的语句&#xff0c;感觉用dayjs()的subtract()和add()也挺方便易懂的&#xff0c;以此记录 安装dayjs npm install dayjs --save dayjs().add(value : Number, unit : String); dayjs().add(7, day); //在当前的基础上加7天dayjs().subtract(value : N…...

YOLOv5全新Neck改进:BiSPAN 结构独一无二,为目标检测打造全新融合网络,增强定位信号,对于小目标检测的定位具有重要意义

💡本篇内容:YOLOv5全新Neck改进:BiSPAN 结构升级版,为目标检测打造全新融合网络,增强定位信号,对于小目标检测的定位具有重要意义 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv5 按步骤操作运行改进后的代码即可 💡本文提出改进 原创 方式:二次创新,YOLOv…...

flutter开发实战-video_player插件播放抖音直播实现(仅限Android端)

flutter开发实战-video_player插件播放抖音直播实现&#xff08;仅限Android端&#xff09; 在之前的开发过程中&#xff0c;遇到video_player播放视频&#xff0c;通过查看video_player插件描述&#xff0c;可以看到video_player在Android端使用exoplayer&#xff0c;在iOS端…...

React组件

一、React组件 函数组件 // 函数组件 // 组件的名称必须首字母大写 // 函数组件必须有返回值 如果不需要渲染任何内容&#xff0c;则返回 null function HelloFn () {return <div>这是我的第一个函数组件!</div> }// 定义类组件 function App () {return (<di…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息&#xff1a;libc.so.6: cannot open shared object file: No such file or directory&#xff1a; #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...