【学习笔记】莫比乌斯反演
退役OIer回来受虐啦
一些定义
μ ( x ) = { 1 x > 1 ( − 1 ) n x = ∏ i = 1 n P i 0 o t h e r w i s e \mu(x) = \begin{cases} 1 & x > 1 \\ (-1)^n & x = \prod _ {i=1} ^ {n} P_{i}\\ 0 & otherwise \end{cases} μ(x)=⎩ ⎨ ⎧1(−1)n0x>1x=∏i=1nPiotherwise
φ ( n ) = ∑ i = 1 n [ g c d ( i , n ) = 1 ] \varphi(n)=\sum_{i=1}^{n}\ [gcd(i,n)=1] φ(n)=i=1∑n [gcd(i,n)=1]
ε ( n ) = [ n = 1 ] \varepsilon(n)=\ [n=1] ε(n)= [n=1]
一些性质
∑ d ∣ n μ ( d ) = ε ( n ) \sum_{d|n}\mu(d)=\varepsilon(n) d∣n∑μ(d)=ε(n)
即 μ ∗ 1 = ε \mu\ast1=\varepsilon μ∗1=ε
推广一下:
[ g c d ( i , j ) = 1 ] = ∑ d ∣ g c d ( i , j ) μ ( d ) [gcd(i,j)=1]=\sum_{d|gcd(i,j)}\mu(d) [gcd(i,j)=1]=d∣gcd(i,j)∑μ(d)
φ ∗ 1 = i d \varphi \ast 1=id φ∗1=id
莫比乌斯变换
f ( n ) = ∑ d ∣ n g ( d ) ⇒ g ( n ) = ∑ d ∣ n f ( d ) μ ( n d ) f(n)=\sum_{d|n} g(d)\ \Rightarrow\ g(n)=\sum_{d|n}f(d)\mu(\frac{n}{d}) f(n)=d∣n∑g(d) ⇒ g(n)=d∣n∑f(d)μ(dn)
f ( n ) = ∑ n ∣ d g ( d ) ⇒ g ( n ) = ∑ n ∣ d μ ( d n ) f ( d ) f(n)=\sum_{n|d}g(d)\ \Rightarrow\ g(n)=\sum_{n|d}\mu(\frac{d}{n})f(d) f(n)=n∣d∑g(d) ⇒ g(n)=n∣d∑μ(nd)f(d)
例题
[HAOI2011] Problem b
题目描述
对于给出的 n n n 个询问,每次求有多少个数对 ( x , y ) (x,y) (x,y),满足 a ≤ x ≤ b a \le x \le b a≤x≤b, c ≤ y ≤ d c \le y \le d c≤y≤d,且 gcd ( x , y ) = k \gcd(x,y) = k gcd(x,y)=k, gcd ( x , y ) \gcd(x,y) gcd(x,y) 函数为 x x x 和 y y y 的最大公约数。
输入格式
第一行一个整数 n n n,接下来 n n n 行每行五个整数,分别表示 a , b , c , d , k a,b,c,d,k a,b,c,d,k。
输出格式
共 n n n 行,每行一个整数表示满足要求的数对 ( x , y ) (x,y) (x,y) 的个数。
样例 #1
样例输入 #1
2
2 5 1 5 1
1 5 1 5 2
样例输出 #1
14
3
提示
对于 100 % 100\% 100% 的数据满足: 1 ≤ n , k ≤ 5 × 1 0 4 1 \le n,k \le 5 \times 10^4 1≤n,k≤5×104, 1 ≤ a ≤ b ≤ 5 × 1 0 4 1 \le a \le b \le 5 \times 10^4 1≤a≤b≤5×104, 1 ≤ c ≤ d ≤ 5 × 1 0 4 1 \le c \le d \le 5 \times 10^4 1≤c≤d≤5×104。
题解
根据容斥原理,原式可以分成 4 块来处理,每一块的式子都为
∑ i = 1 n ∑ j = 1 m [ gcd ( i , j ) = k ] \sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)=k] i=1∑nj=1∑m[gcd(i,j)=k]
考虑化简该式子
∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ε ( gcd ( i , j ) ) \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\varepsilon(\gcd(i,j)) i=1∑⌊kn⌋j=1∑⌊km⌋ε(gcd(i,j))
将 ε \varepsilon ε 函数展开得到
∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d ∣ gcd ( i , j ) μ ( d ) \displaystyle\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\sum_{d\mid \gcd(i,j)}\mu(d) i=1∑⌊kn⌋j=1∑⌊km⌋d∣gcd(i,j)∑μ(d)
变换求和顺序,先枚举 d ∣ gcd ( i , j ) d\mid \gcd(i,j) d∣gcd(i,j) 可得
∑ d = 1 μ ( d ) ∑ i = 1 ⌊ n k ⌋ [ d ∣ i ] ∑ j = 1 ⌊ m k ⌋ [ d ∣ j ] \displaystyle\sum_{d=1}\mu(d)\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}[d\mid i]\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[d\mid j] d=1∑μ(d)i=1∑⌊kn⌋[d∣i]j=1∑⌊km⌋[d∣j]
易知 1 ∼ ⌊ n k ⌋ 1\sim\lfloor\dfrac{n}{k}\rfloor 1∼⌊kn⌋ 中 d d d 的倍数有 ⌊ n k d ⌋ \lfloor\dfrac{n}{kd}\rfloor ⌊kdn⌋ 个,故原式化为
∑ d = 1 min ( ⌊ n k ⌋ , ⌊ m k ⌋ ) μ ( d ) ⌊ n k d ⌋ ⌊ m k d ⌋ \displaystyle\sum_{d=1}^{\min(\lfloor \frac{n}{k}\rfloor,\lfloor \frac{m}{k}\rfloor)}\mu(d)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor d=1∑min(⌊kn⌋,⌊km⌋)μ(d)⌊kdn⌋⌊kdm⌋
整除分块即可求解
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e5+77;
int mu[N],sum[N];
vector<int> p;
bool bz[N];
void init(int n)
{mu[1]=1;for(int i=2; i<=n; i++){if(!bz[i]){mu[i]=-1;p.push_back(i);}for(auto j:p){if(j*i>n) break;bz[i*j]=1;if(i%j==0) break;else mu[i*j]=-mu[i];}}for(int i=1; i<=n; i++) sum[i]=sum[i-1]+mu[i];
}
int solve(int n,int m,int k)
{int ans=0;n/=k; m/=k;for(int l=1,r; l<=min(n,m); l=r+1){r=min((n/(n/l)),(m/(m/l)));ans+=(n/l)*(m/l)*(sum[r]-sum[l-1]);}return ans;
}
void O_o()
{int a,b,c,d,k;cin>>a>>b>>c>>d>>k;cout<<solve(b,d,k)-solve(a-1,d,k)-solve(b,c-1,k)+solve(a-1,c-1,k)<<"\n";
}
signed main()
{ios::sync_with_stdio(false); cin.tie(0),cout.tie(0);int T=1;init(50000);cin>>T;while(T--){O_o();}
}
[国家集训队] Crash的数字表格 / JZPTAB
题目描述
今天的数学课上,Crash 小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数 a a a 和 b b b, lcm ( a , b ) \text{lcm}(a,b) lcm(a,b) 表示能同时被 a a a 和 b b b 整除的最小正整数。例如, lcm ( 6 , 8 ) = 24 \text{lcm}(6, 8) = 24 lcm(6,8)=24。
回到家后,Crash 还在想着课上学的东西,为了研究最小公倍数,他画了一张 $ n \times m$ 的表格。每个格子里写了一个数字,其中第 i i i 行第 j j j 列的那个格子里写着数为 lcm ( i , j ) \text{lcm}(i, j) lcm(i,j)。
看着这个表格,Crash 想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当 n n n 和 m m m 很大时,Crash 就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash 只想知道表格里所有数的和对 20101009 20101009 20101009 取模后的值。
输入格式
输入包含一行两个整数,分别表示 n n n 和 m m m。
输出格式
输出一个正整数,表示表格中所有数的和对 20101009 20101009 20101009 取模后的值。
样例 #1
样例输入 #1
4 5
样例输出 #1
122
提示
样例输入输出 1 解释
该表格为:
| 1 1 1 | 2 2 2 | 3 3 3 | 4 4 4 | 5 5 5 |
|---|---|---|---|---|
| 2 2 2 | 2 2 2 | 6 6 6 | 4 4 4 | 10 10 10 |
| 3 3 3 | 6 6 6 | 3 3 3 | 12 12 12 | 15 15 15 |
| 4 4 4 | 4 4 4 | 12 12 12 | 4 4 4 | 20 20 20 |
数据规模与约定
- 对于 30 % 30\% 30% 的数据,保证 n , m ≤ 1 0 3 n, m \le 10^3 n,m≤103。
- 对于 70 % 70\% 70% 的数据,保证 n , m ≤ 1 0 5 n, m \le 10^5 n,m≤105。
- 对于 100 % 100\% 100% 的数据,保证 1 ≤ n , m ≤ 1 0 7 1\le n,m \le 10^7 1≤n,m≤107。
题解
∑ i = 1 n ∑ j = 1 m l c m ( i , j ) = ∑ i = 1 n ∑ j = 1 m i ⋅ j g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 m ∑ d = g c d ( i , j ) i ⋅ j d = ∑ d = 1 m i n ( n , m ) ∑ d ∣ i n ∑ d ∣ j m [ g c d ( i , j ) = d ] i ⋅ j d = ∑ d = 1 m i n ( n , m ) d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ g c d ( i , j ) = 1 ] i j \sum_{i=1}^{n}\sum_{j=1}^{m} lcm(i,j)\\ =\sum_{i=1}^{n}\sum_{j=1}^{m} \frac{i\cdot j}{gcd(i,j)}\\ =\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d=gcd(i,j)} \frac{i\cdot j}{d}\\ =\sum_{d=1}^{min(n,m)}\sum_{d|i}^{n}\sum_{d|j}^{m} [gcd(i,j)=d]\frac{i\cdot j}{d}\\ =\sum_{d=1}^{min(n,m)}d\ \sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\sum_{j=1}^{\left\lfloor \frac{m}{d} \right\rfloor} [gcd(i,j)=1]i j i=1∑nj=1∑mlcm(i,j)=i=1∑nj=1∑mgcd(i,j)i⋅j=i=1∑nj=1∑md=gcd(i,j)∑di⋅j=d=1∑min(n,m)d∣i∑nd∣j∑m[gcd(i,j)=d]di⋅j=d=1∑min(n,m)d i=1∑⌊dn⌋j=1∑⌊dm⌋[gcd(i,j)=1]ij
令 S ( n , m ) = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = 1 ] i j S(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m} [gcd(i,j)=1]i j S(n,m)=∑i=1n∑j=1m[gcd(i,j)=1]ij
S ( n , m ) = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = 1 ] i j = ∑ d = 1 n ∑ d ∣ i n ∑ d ∣ j m μ ( d ) ⋅ i ⋅ j = ∑ d = 1 n μ ( d ) ⋅ d 2 ⋅ ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i ⋅ j S(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m} [gcd(i,j)=1]i j\\ =\sum_{d=1}^n\sum_{d\mid i}^n\sum_{d\mid j}^m\mu(d)\cdot i\cdot j\\ =\sum_{d=1}^n\mu(d)\cdot d^2\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\cdot j S(n,m)=i=1∑nj=1∑m[gcd(i,j)=1]ij=d=1∑nd∣i∑nd∣j∑mμ(d)⋅i⋅j=d=1∑nμ(d)⋅d2⋅i=1∑⌊dn⌋j=1∑⌊dm⌋i⋅j
观察上式,前半段可以预处理前缀和;后半段又是一个范围内数对之和,记
g ( n , m ) = ∑ i = 1 n ∑ j = 1 m i ⋅ j = n ⋅ ( n + 1 ) 2 × m ⋅ ( m + 1 ) 2 g(n,m)=\sum_{i=1}^n\sum_{j=1}^m i\cdot j=\frac{n\cdot(n+1)}{2}\times\frac{m\cdot(m+1)}{2} g(n,m)=i=1∑nj=1∑mi⋅j=2n⋅(n+1)×2m⋅(m+1)
可以 Θ ( 1 ) \Theta(1) Θ(1) 求解
不过这玩意要整除分块套整除分块,而且细节不少
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e7+7,mod=20101009;
int mu[N],sum[N];
vector<int> p;
bool bz[N];
int Sum(int x, int y)
{return ((x*(x+1)/2%mod)*(y*(y+1)/2%mod))%mod;
}
void init(int n)
{mu[1]=1;for(int i=2; i<=n; i++){if(!bz[i]){mu[i]=-1;p.push_back(i);}for(auto j:p){if(j*i>n) break;bz[i*j]=1;if(i%j==0) break;else mu[i*j]=-mu[i];}}for(int i=1; i<=n; i++) sum[i]=(sum[i-1]+mu[i]*i*i%mod)%mod;
}
int S(int n,int m)
{int ans=0;for(int l=1,r; l<=min(n,m); l=r+1){r=min(n/(n/l),m/(m/l));(ans+=Sum(n/l,m/l)%mod*(sum[r]-sum[l-1])%mod)%=mod;}return ans;
}
void O_o()
{int n,m,ans=0;cin>>n>>m;init(n);for(int l=1,r; l<=min(n,m); l=r+1){r=min(n/(n/l),m/(m/l));(ans+=((r-l+1)*(l+r)/2)%mod*S(n/l,m/l)%mod)%=mod;}cout<<(ans+mod)%mod;
}
signed main()
{ios::sync_with_stdio(false); cin.tie(0),cout.tie(0);int T=1;// cin>>T;while(T--){O_o();}
}
相关文章:
【学习笔记】莫比乌斯反演
退役OIer回来受虐啦 一些定义 μ ( x ) { 1 x > 1 ( − 1 ) n x ∏ i 1 n P i 0 o t h e r w i s e \mu(x) \begin{cases} 1 & x > 1 \\ (-1)^n & x \prod _ {i1} ^ {n} P_{i}\\ 0 & otherwise \end{cases} μ(x)⎩ ⎨ ⎧1(−1)n0x>1x∏i1nPi…...
一款构建Python命令行应用的开源库
1 简介 当我们编写 Python 程序时,我们经常需要与用户进行交互,接收输入并输出结果。Python 提供了许多方法来实现这一点,其中一个非常方便的方法是使用 typer 库。typer 是一个用于构建命令行应用程序的 Python 库,它使得创建命令…...
10-Node.js模块化
01.模块化简介 目标 了解模块化概念和好处,以及 CommonJS 标准语法导出和导入 讲解 在 Node.js 中每个文件都被当做是一个独立的模块,模块内定义的变量和函数都是独立作用域的,因为 Node.js 在执行模块代码时,将使用如下所示的…...
数字IC前端学习笔记:数字乘法器的优化设计(Dadda Tree乘法器)
相关阅读 数字IC前端https://blog.csdn.net/weixin_45791458/category_12173698.html?spm1001.2014.3001.5482 华莱士树仍然是一种比较规则的结构(这使得可以方便地生成树的结构),这导致了它所使用的全加器和半加器个数不是最少的ÿ…...
计算机专业毕业设计项目推荐14-文档编辑平台(SpringBoot+Vue+Mysql)
文档编辑平台(SpringBootVueMysql) **介绍****各部分模块实现** 介绍 本系列(后期可能博主会统一为专栏)博文献给即将毕业的计算机专业同学们,因为博主自身本科和硕士也是科班出生,所以也比较了解计算机专业的毕业设计流程以及模式,在编写的…...
【读书后台管理系统】—后端框架搭建(二)
【读书后台管理系统】—后端框架搭建(二) 一、 Node 简介 Node 是一个基于 V8 引擎的 Javascript 运行环境,它使得 Javascript 可以运行在服务端,直接与操作系统进行交互,与文件控制、网络交互、进程控制等 Chrome …...
【DLoopDetector(C++)】DBow2词袋模型loop close学习
0.前言 最近读了两篇论文,论文作者开源了一种基于词袋模型DBoW2库的DLoopDetector算法,自己运行demo测试一下 对应论文介绍:Bags of Binary Words for Fast Place Recognition in Image Sequences 开源项目Github地址:https://gi…...
什么是CAS机制?
CAS和Synchronized的区别是什么?适合什么样的场景?有什么样的优点和缺点? 示例程序:启动两个线程,每个线程中让静态变量count循环累加100次。 public class ThreadTest {private static int count 0;public static …...
Java多态详解
下面讲解一下Java中的多态机制,力求用最通俗易懂的语言,最精炼的话语,最生动的例子,深入浅出Java多态,帮助读者轻松掌握这个知识点。 什么是多态? 多态是指同一种行为具有多个不同表现形式的能力。 多态…...
Android中简单实现Spinner的数据绑定
Android中简单实现Spinner的数据绑定 然后声明对象实例并加入到arraylist里面,并设置spinner的适配器 Spinner Sp (Spinner).............// List<CItem > lst new ArrayList<CItem>(); CItem ct new CItem ("1","测试"); lst.Add(ct)…...
【版本控制工具二】Git 和 Gitee 建立联系
文章目录 前言一、Git 和 Gitee 建立联系1.1 任意目录下,打开 git bash 命令行,输入以下命令生成公钥1.2 配置SSH公钥1.3 进行全局配置 二、其它相关Git指令2.1 常用指令2.2 指令操作可能出现的问题 三、补充3.1 **为什么要先commit,然后pull…...
最新AI智能创作系统ChatGPT商业源码+详细图文搭建部署教程+AI绘画系统
一、AI系统介绍 SparkAi创作系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧&am…...
【算法与数据结构】--目录
第一部分:算法基础 第一章:算法入门第二章:数据结构概述第三章:算法设计与分析 3.1 贪心算法3.2 动态规划3.3 分治算法3.4 回溯算法 第二部分:常见数据结构 第四章:数组和链表 4.1 数组4.2 链表4.3 比较…...
爱普生LQ1900KIIH复位方法
爱普生EPSON 1900KIIH是一部通用针式打印机,136列(10cpi下)的打印宽度,缓冲区128KB,打印速度为270字/秒。 打印机类型 打印方式:24针击打式点阵打印、打印方向:双向逻辑查找、安全规格标准&am…...
字段位置顺序对值的影响
Unity中验证AB加载场景时报错: Cannot load scene: Invalid scene name (empty string) and invalid build index -1 报错原因是因为把字段放在了Start函数后面(图一)改成(图二)就好了。图一中协程使用的sceneBName字段值为null。 图一: 图二:…...
pytorch_神经网络构建2(数学原理)
文章目录 深层神经网络多分类深层网络反向传播算法优化算法动量算法Adam 算法 深层神经网络 分类基础理论: 交叉熵是信息论中用来衡量两个分布相似性的一种量化方式 之前讲述二分类的loss函数时我们使用公式-(y*log(y_)(1-y)*log(1-y_)进行误差计算 y表示真实值,y_表示预测值 …...
Oracle SQL Developer 中查看表的数据和字段属性、录入数据
在Oracle SQL Developer中,选中一个表时,右侧会列出表的情况;第一个tab是字段的名称、数据类型等属性; 切换到第二个tab,显示表的数据; 这和sql server management studio不一样的; 看一下部门…...
java docker图片叠加水印中文乱码
java docker图片叠加水印中文乱码 技术交流博客 http://idea.coderyj.com/ 1.由于项目需要后端需要叠加图片水印,但是中文乱码,导致叠加了之后 中文是框框 2.经过多方查找基本都说在 linux下安装字体就解决了,但是尝试了均无效 3.后来忽然想到我的项目是用docker打包部署的,不…...
string类的使用方式的介绍
目录 前言 1.什么是STL 2. STL的版本 3. STL的六大组件 4.STL的缺陷 5.string 5.1 为什么学习string类? 5.1.1 C语言中的字符串 5.2 标准库中的string类 5.3 string类的常用接口的使用 5.3.1 构造函数 5.3.2 string类对象的容量操作 5.3.3 string类对象…...
FFmpeg 命令:从入门到精通 | 命令行环境搭建
FFmpeg 命令:从入门到精通 | 命令行环境搭建 FFmpeg 命令:从入门到精通 | 命令行环境搭建安装 FFmpeg验证 FFmpeg 是否安装成功 FFmpeg 命令:从入门到精通 | 命令行环境搭建 安装 FFmpeg 进入 FFmpeg 官网: 点击 Download&#…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
