基于黏菌优化的BP神经网络(分类应用) - 附代码
基于黏菌优化的BP神经网络(分类应用) - 附代码
文章目录
- 基于黏菌优化的BP神经网络(分类应用) - 附代码
- 1.鸢尾花iris数据介绍
- 2.数据集整理
- 3.黏菌优化BP神经网络
- 3.1 BP神经网络参数设置
- 3.2 黏菌算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用黏菌算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。
1.鸢尾花iris数据介绍
本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:
| 特征1 | 特征2 | 特征3 | 类别 | |
|---|---|---|---|---|
| 单组iris数据 | 5.3 | 2.1 | 1.2 | 1 |
3种类别用1,2,3表示。
2.数据集整理
iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:
| 训练集(组) | 测试集(组) | 总数据(组) |
|---|---|---|
| 105 | 45 | 150 |
类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。
当进行数据训练对所有输入特征数据均进行归一化处理。
3.黏菌优化BP神经网络
3.1 BP神经网络参数设置
通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络参数如下:
%创建神经网络
inputnum = 4; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 3; %outputnum 隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
3.2 黏菌算法应用
黏菌算法原理请参考:https://blog.csdn.net/u011835903/article/details/113710762
黏菌算法的参数设置为:
popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;
第二层权值数量为:3;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从黏菌算法的收敛曲线可以看到,整体误差是不断下降的,说明黏菌算法起到了优化的作用:



5.Matlab代码
相关文章:
基于黏菌优化的BP神经网络(分类应用) - 附代码
基于黏菌优化的BP神经网络(分类应用) - 附代码 文章目录 基于黏菌优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.黏菌优化BP神经网络3.1 BP神经网络参数设置3.2 黏菌算法应用 4.测试结果:5.M…...
C语言基础语法复习08-位域bit-fields
在c2011 iso文档中,位域与struct、union是一起定义的: Structure and union specifiers Syntaxstruct-or-union-specifier:struct-or-union identifier opt { struct-declaration-list }struct-or-union identifierstruct-or-union:structunionstruct-d…...
3.2.OpenCV技能树--二值图像处理--图像腐蚀与膨胀
文章目录 1.文章内容来源2.图像膨胀处理2.1.图像膨胀原理简介2.2.图像膨胀核心代码2.3.图像膨胀效果展示 3.图像腐蚀处理3.1.图像腐蚀原理简介3.2.图像腐蚀核心代码3.3.图像腐蚀效果展示 4.易错点总结与反思 1.文章内容来源 1.题目来源:https://edu.csdn.net/skill/practice/o…...
基于FPGA的数字时钟系统设计
在FPGA的学习中,数字时钟是一个比较基础的实验案例,通过该实验可以更好的锻炼初学者的框架设计能力以及逻辑思维能力,从而打好坚实的基本功,接下来就开始我们的学习吧! 1.数码管介绍 数码管通俗理解就是将8个LED(包含…...
linux centos Python + Selenium+Chrome自动化测试环境搭建?
在 CentOS 系统上搭建 Python Selenium Chrome 自动化测试环境,需要执行以下步骤: 1、安装 Python CentOS 7 自带的 Python 版本较老,建议使用 EPEL 库或源码安装 Python 3。例如,使用 EPEL 库安装 Python 3: sud…...
mysql面试题20:有哪些合适的分布式主键方案
该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:有哪些合适的分布式主键方案? UUID:UUID通常是由一个二进制的128位整数表示,可以保证全局的唯一性。在Java中,可以通过UUID类生成一个UUID。例…...
git的基础操作
https://blog.csdn.net/a18307096730/article/details/124586216?spm1001.2014.3001.5502 1:使用场景 SVN,如果服务器里面的东西坏掉了,那么就全线崩盘了。 1:基本配置 git config --global user.name “luka” (自己的名字就行) git co…...
lua 中文字符的判断简介
一般在工作中会遇到中文字符的判断、截断、打码等需求,之前一直没有总结,虽然网上资料也多,今天在这里简单的总结一下。 1 .UTF-8简单描述 UTF-8 是 Unicode 的实现方式之一,其对应关系(编码规则)如下表所…...
SSM-XML整合
SSM-XML整合 核心配置文件 maven坐标 <dependencies><!--数据库驱动--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.27</version></dependency><!--数据…...
线性代数小例子
这样做有什么问题呢: A 2 A > A ( A − E ) 0 > A E A 0 A^2 A > A(A - E) 0> A E \quad A 0 A2A>A(A−E)0>AEA0 上述做法是错误的,这是因为两个矩阵的乘积结果为0,并不能说明这两个矩阵就是0,即上述…...
ASP.NET Core 开发 Web API
2. Web Api 的创建与Http类型的介绍 2.1 ASP.Net Core Web API项目的创建 1.创建ASP.NET Core Web API项目 从“文件”菜单中选择“新建”“项目”。 在搜索框中输入“Web API”。 选择“ASP.NET Core Web API”模板,然后选择“下一步”。 在“配置新项目”对话框中…...
QImage函数setAlphaChannel
最近使用QImage的函数setAlphaChannel时遇到了一个坑,花了不少时间才弄清楚:在使用这个函数后,图像格式都会变成QImage::Format_ARGB32_Premultiplied。 先看下setAlphaChannel在帮助文档的说明: void QImage::setAlphaChannel(…...
区块链、隐私计算、联邦学习、人工智能的关联
目录 前言 1.区块链 2.隐私计算 3.联邦学习(隐私计算技术) 4.区块链和联邦学习 5.区块链和人工智能 展望 参考文献 前言 区块链公开透明,但也需要隐私,人工智能强大,但也需要限制。当前我们需要的是一个在保证…...
Unity可视化Shader工具ASE介绍——4、ASE的自定义模板使用
大家好,我是阿赵。 继续介绍Unity可视化Shader编辑工具ASE。之前的文章介绍了在ASE里面可以选择不同的Shader类型。这一篇来继续探讨一下,这些Shader类型究竟是什么。 一、所谓的Shader类型是什么 选择不同的Shader类型,会出现不同的选项…...
FastAPI学习-22.response 异常处理 HTTPException
前言 某些情况下,需要向客户端返回错误提示。 这里所谓的客户端包括前端浏览器、其他应用程序、物联网设备等。 需要向客户端返回错误提示的场景主要如下: 客户端没有执行操作的权限客户端没有访问资源的权限客户端要访问的项目不存在等等 … 遇到这些…...
75.颜色分类
原地排序:空间复杂度为1 class Solution { public:void sortColors(vector<int>& nums) {if(0){//法一:单指针两个遍历int nnums.size();int ptr0;for(int i0;i<n;i){if(nums[i]0){swap(nums[i],nums[ptr]);ptr;}}for(int iptr;i<n;i){…...
浅谈分散式存储项目MEMO
Memo本质上是互联网项目,应用了一些区块链技术而已,或者叫做包了层区块链皮的互联网项目。 最开始对标Filcoin,后来发现Filcoin也有问题,分布式存储解决方案并不完美,抑或者是自己团队的研发能力无法与IPFS团队PK&…...
ansible角色运行指定角色路径
众所周知ansible默认角色路径为:/usr/share/ansible/roles目录 而用户默认安装角色路径为$HOME/.ansible/roles/目录。 如果我们不想修改ansible配置文件又想在任意目录基于运行角色部署服务,需要在ansible剧本中 指定角色路径。 分享剧本如下&#x…...
【数据结构-字符串 三】【字符串转换】字符串解码
废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【字符串转换】,使用【字符串】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为&…...
LabVIEW中不同颜色连线的含义
LabVIEW中不同颜色连线的含义 LabVIEW中的连线具有不同的颜色,样式和宽度。每个都代表了什么? 下表列出了常见的连线类型: 相关信息 请注意,类的连线颜色是可更改的。该表显示其默认外观。 连线用于在程序框图各对象间传递数据…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
