人工智能在教育上的应用2-基于大模型的未来数学教育的情况与实际应用
大家好,我是微学AI ,今天给大家介绍一下人工智能在教育上的应用2-基于大模型的未来数学教育的情况与实际应用,随着人工智能(AI)和深度学习技术的发展,大模型已经开始渗透到各个领域,包括数学教育。本文将详细介绍基于大模型在数学教育中的实际应用,随着AI技术的不断发展和进步,我们已经看到AI可以在诸如图像识别、自然语言处理等多个领域内提供强大的支持。其中一个最具潜力和前景广阔的领域就是教育。特别是,在复杂且抽象性高的数学教育领域,AI技术尤其显示出其独特优势。
一、背景
传统上,数学被认为是一门需要通过刻苦钻研和长时间实践才能掌握好的科目。然而,在过去几年里,我们已经看到了AI如何改变这种现状。基于大模型如ChatGPT,ChatGLM2,LLaMA,百川,通义千问等在数学教育上得以应用,并且取得了显著成效。
二、原理与方法
1. 人工智能数学原理
利用深度神经网络进行机器学习主要涉及以下几个核心概念:
1.向量空间:
对于任何输入(例如文本),机器都会将其转化为高维向量空间中的一个点。在数学上,我们可以将向量空间定义为一组具有加法和标量乘法两种运算的对象集合。这个定义可以表示为:
设 V V V是一个非空集合,如果对于所有 x , y ∈ V x, y \in V x,y∈V和所有标量 c ∈ R c \in \mathbb{R} c∈R或 C \mathbb{C} C,下列公理成立:
- x + y = y + x x + y = y + x x+y=y+x (交换律)
- ( x + y ) + z = x + ( y + z ) (x + y) + z = x + (y + z) (x+y)+z=x+(y+z) (结合律)
- 存在元素 0 ∈ V 0 \in V 0∈V使得 x + 0 = x x+0=x x+0=x
- 对每个 x ∈ V x\in V x∈V, 存在元素 − x ∈ V -x\in V −x∈V, 使得 x + ( − x ) = 0 x+(-x)=0 x+(−x)=0
- c ( x + y ) = c x + c y c(x+y)=cx+cy c(x+y)=cx+cy
- ( c + d ) x = c x + d x (c+d)x=cx+dx (c+d)x=cx+dx
- ( c d ) x = c ( d x ) (cd)x=c(dx) (cd)x=c(dx)
- 1 ∗ x = x 1*x=x 1∗x=x
则称 ( V , + , . ) (V,+,.) (V,+,.)是一个向量空间。
2.激活函数:
每一个神经元都有一个激活函数来决定它是否被“激活”。常见的激活函数有ReLU, Sigmoid, Tanh等。下面是这些函数的数学形式:
ReLU:
f ( x ) = m a x ( 0 , x ) f(x) = max(0,x) f(x)=max(0,x)
Sigmoid:
f ( x ) = 1 1 + e − x f(x) = \frac{1}{1+e^{-x}} f(x)=1+e−x1
Tanh:
f ( x ) = t a n h ( x ) = e x − e − x e x + e − x f(x) = tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} f(x)=tanh(x)=ex+e−xex−e−x
3.损失函数
损失函数衡量预测值与真实值之间的差异。例如均方误差(Mean Squared Error),交叉熵(Cross Entropy),Hinge Loss等。
均方误差(MSE):
L ( y , y ^ ) = 1 n ∑ i = 1 n ( y i − y i ^ ) 2 L(y,\hat{y})=\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y_i})^2 L(y,y^)=n1i=1∑n(yi−yi^)2
交叉熵(Cross Entropy):
对于二分类问题:
L ( y , y ^ ) = − [ y l o g ( y ^ ) + ( 1 − y ) l o g ( 1 − y ^ ) ] L(y,\hat{y})=-[ylog(\hat{y})+(1-y)log(1-\hat{y})] L(y,y^)=−[ylog(y^)+(1−y)log(1−y^)]
多分类问题:
L ( y , y ^ ) = − ∑ i = 1 n y i l o g ( y i ^ ) L(y,\hat{y})=-\sum_{i=1}^ny_ilog(\hat{y_i}) L(y,y^)=−i=1∑nyilog(yi^)
4.反向传播算法:
反向传播算法用于计算神经网络中权重的梯度。在一个多层神经网络中,对于每一层 l l l和每个神经元 j j j,我们都可以计算出一个“误差项” δ j ( l ) \delta^{(l)}_j δj(l)来表示该神经元对最终输出误差的贡献程度。具体来说,我们有:
δ j ( L ) = ∂ ∂ z j ( L ) 1 2 ∣ ∣ y − h W , b ( x ) ∣ ∣ 2 = − ( y j − a j ( L ) ) ⋅ f ′ ( z j ( L ) ) \delta^{(L)}_j = \frac{\partial}{\partial z^{(L)}_j} \frac{1}{2} ||y - h_{W,b}(x)||^2 = -(y_j - a^{(L)}_j) \cdot f'(z^{(L)}_j) δj(L)=∂zj(L)∂21∣∣y−hW,b(x)∣∣2=−(yj−aj(L))⋅f′(zj(L))
其中 L L L是网络的输出层, h W , b ( x ) h_{W,b}(x) hW,b(x)是网络关于输入 x x x的输出,而 f ′ f' f′是激活函数的导数。然后我们再通过以下公式反向传播这些误差项:
δ i ( l ) = ( ∑ j = 1 s l + 1 W j i ( l + 1 ) δ j ( l + 1 ) ) f ′ ( z i ( l ) ) \delta^{(l)}_i = (\sum_{j=1}^{s_{l+1}} W_{ji}^{(l+1)} \delta_j^{(l+1)}) f'(z_i^{(l)}) δi(l)=(j=1∑sl+1Wji(l+1)δj(l+1))f′(zi(l))
其中 s l s_l sl表示第 l l l层的单元数(不包括偏置单元),并且这个等式必须对所有 l < L , i ∈ 1 , . . . , s l l< L, i \in { 1, ..., s_l } l<L,i∈1,...,sl成立。
最后,使用这些误差项计算权重和偏置项梯度:
∇ W j k J ( W , b ; x , y ) = a k l δ j ( l + 1 ) \nabla_{W_jk} J(W,b;x,y) = a_k^l \delta_j ^{(l+1)} ∇WjkJ(W,b;x,y)=aklδj(l+1)
∇ b i l J ( W , b ; x , y ) = δ i ( l ) \nabla_{b_i^l} J(W,b;x,y) = \delta_i ^{(l)} ∇bilJ(W,b;x,y)=δi(l)
在得到所有样本上损失函数关于权重和偏置的梯度之后,我们就可以用随机梯度下降(或其他优化算法)来更新权重和偏置了。
2. 模型训练框架
我们使用PyTorch框架来训练模型。这是一种基于Python的开源机器学习库,可以提供强大的GPU加速计算能力。
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
import torchtokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).half().cuda()
model = model.eval()class MathDataset(Dataset):def __init__(self, csv_file):self.data = pd.read_csv(csv_file)def __len__(self):return len(self.data)def __getitem__(self, idx):question = self.data.iloc[idx, 0]answer = self.data.iloc[idx, 1]return question, answerdataset = MathDataset('sample_data.csv')
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)num_epochs =5
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())for epoch in range(num_epochs):for i, (questions, answers) in enumerate(dataloader):output = model(questions)loss = criterion(output.view(-1), answers.view(-1))optimizer.zero_grad()loss.backward()optimizer.step()
三、创新点
基于大模型在数学教育上的应用系统主要体现以下五个创新点:
1.个性化教学:每位学生的理解能力、进度和偏好都是独特的。传统的课堂教育模式往往难以满足每个人的需求。然而,利用AI技术,我们可以为每位学生提供定制化的数学教程。例如,对于那些在几何方面表现出色但在代数方面有困难的学生,系统可以调整其课程内容,以强化他们在代数方面的理解和技能。
2.自适应反馈:传统上,老师需要花费大量时间批改作业并提供反馈。然而,在AI驱动下,我们可以根据每位学生答题情况实时调整题目难易程度和内容,并立即提供反馈。例如,如果一个学生连续回答正确几道高级微积分问题,则系统可能会推送更具挑战性的问题;相反地,如果他们在某一主题上表现得不够好,则系统可能会降低问题难度并给出更详细地步骤说明。
3.实时互动:与传统课堂教育相比,在线AI教师可以24小时全天候在线回答问题,并给出即时反馈。例如,在处理复杂数字计算或者解决复杂几何证明过程中遇到困惑时, 学生可以立即向AI询问并获取解答, 而无需等待下一次课程或寻找额外辅导。
4.无限扩展性:随着越来越多数据被输入到系统中, AI模型将会不断地进行自我更新和优化, 从而使得其理解深度和广度都得到增强。这意味着无论是初级算术还是高级微积分知识点, AI都能提供支持.
5.普适性:无论是在城市还是偏远地区, 只要有网络连接就可享受到这种服务。这对于那些因为各种原因(如地理位置、经济条件等)无法获得高质量教育的人来说,尤其重要。例如, 在偏远地区的学生也能通过这种方式接触到优秀的教学资源,从而提升他们的数学能力。
以上创新点将大模型应用于数学教育,使得个性化和高效的教育成为可能,并有望在全球范围内提升数学教育质量。
四、结论
本文是主要讲述了基于大模型在数学教育上的应用系统通过结合深度神经网络和大数据技术,在提高数学教育质量方面发挥了巨大作用。随着技术进步和更多资源投入,在未来可能会看到更多此类应用出现,为全球数学教育带来革命性的改变。
相关文章:

人工智能在教育上的应用2-基于大模型的未来数学教育的情况与实际应用
大家好,我是微学AI ,今天给大家介绍一下人工智能在教育上的应用2-基于大模型的未来数学教育的情况与实际应用,随着人工智能(AI)和深度学习技术的发展,大模型已经开始渗透到各个领域,包括数学教育。本文将详细介绍基于大模型在数学…...

C++学习day5
目录 作业: 1> 思维导图 2> 多继承代码实现沙发床 1>思维导图 2> 多继承代码实现沙发床 #include <iostream>using namespace std; //创建沙发类 class sofa { private:string sitting; public:sofa(){cout << "sofa的无参构造函数…...

1.软件开发-HTML结构-元素剖析
元素的嵌套 代码注释 ctrl/ URL url 统一资源定位符 一个给定的独特资源在web上的地址 URI...

QTableWidget 表格增删数据
QTableWidgetQTableWidgetQTableWidget部分使用方法,如在表格中插入或删除一行数据以及清空表格数据等。在添加数据时,设置了条件判断如正则表达式,若用户输入的数据不合法,则添加失败并提示用户错误的地方,便于用户修…...

Tableau:商业智能(BI)工具
Tableau入门 1、Tableau概述2、Tableau Desktop2.1、初识Tableau Desktop2.2、Tableau工作区2.3、数据窗格与分析窗格2.4、功能区和标记卡2.4.1、列和行功能区2.4.2、标记卡2.4.3、筛选器功能区2.4.4、页面功能区2.4.5、附加功能区、图例、控件 3、Tableau视图4、Tableau工作簿…...

【gmail注册教程】手把手教你注册Google邮箱账号
手把手教你注册Google邮箱账号 写在前面: 要注意,注册Google邮箱必须要确保自己能够 科学上网,如果暂时做不到,请先进行相关学习。使用的手机号是大陆(86)的。 在保证自己能够科学上网后,在浏…...

docker版jxTMS使用指南:数据采集系统的高可用性
本文讲解4.6版jxTMS中数据采集系统的高可用性,整个系列的文章请查看:4.6版升级内容 docker版本的使用,请查看:docker版jxTMS使用指南 4.0版jxTMS的说明,请查看:4.0版升级内容 4.2版jxTMS的说明ÿ…...

vue如何禁止通过页面输入路径跳转页面
要禁止通过页面输入路径跳转页面,你可以使用Vue Router的导航守卫(navigation guards)来拦截导航并阻止不希望的跳转。 下面是一种常见的方法,你可以在全局导航守卫(global navigation guards)中实现这个功…...

mac,linux环境的基础工具安装【jdk,tomcat】
安装 一 linux环境一)、JDK安装卸载: 二)、 tomcat 安装1、[下载](https://mirrors.bfsu.edu.cn/apache/tomcat/tomcat-8/v8.5.63/bin/apache-tomcat-8.5.63.tar.gz)后,在目录 /usr/local/tomcat下,解压缩2、配置tomca…...

chrome窗口
chrome 窗口的层次: 父窗口类名:Chrome_WidgetWin_1 有两个子窗口: Chrome_RenderWidgetHostHWNDIntermediate D3D Window // 用于匹配 Chrome 窗口的窗口类的前缀。 onst wchar_t kChromeWindowClassPrefix[] L"Chrome_WidgetWin_…...

某快递公司Java一面
1.平衡二叉树和红黑树的区别? 平衡二叉树是一种二叉搜索树,其左子树和右子树的高度差不超过1,以确保在最坏情况下的查找效率是O(log n)。而红黑树是一种自平衡二叉搜索树,通过引入颜色标记(红色和黑色)来维…...

【C++ Primer Plus学习记录】指针——声明和初始化指针
指针用于存储值的地址,因此,指针名表示的地址。*运算符被称为间接值或解除引用运算符,将其应用于指针,可以得到该地址处存储的值。 例如,假设manly是一个指针,则manly表示的是一个地址,而*manl…...

切换至root用户时,命令提示符颜色为白色,如何修改?
当我切换至root用户时,发现命令提示符里的内容全部为白色,如图所示: 这让人看着不愉快,上网先搜索下解决方案:【切换到 root 账户字体全是白的,怎么改颜色啊】- 百度贴吧,但是这个解决方案只是…...

设计模式——17. 状态模式
1. 说明 状态模式(State Pattern)是一种行为设计模式,它允许一个对象在其内部状态发生改变时改变其行为。状态模式将对象的状态封装成不同的状态对象,并将状态切换时的行为委托给当前状态对象。这样,对象在不同状态下具有不同的行为,而无需在对象本身中使用大量的条件语…...

系统架构设计:14 论软基于架构的软件设计方法(ABSD)的软件开发
目录 1 基于架构的软件设计(ABSD) 2 基于架构的软件开发过程 2.1 架构需求过程 2.2 架构设计过程</...

如何在 Spring Boot 中进行文件上传
在 Spring Boot 中进行文件上传 文件上传是Web应用程序中常见的功能之一,它允许用户将文件从客户端上传到服务器。Spring Boot提供了便捷的方式来处理文件上传,并且整合了Spring框架的强大功能,使文件上传变得相对简单。本文将介绍如何在Spr…...

Python 图形化界面基础篇:将应用程序打包为可执行文件
Python 图形化界面基础篇:将应用程序打包为可执行文件 引言 PyInstaller 简介步骤1:安装 PyInstaller 步骤2:创建 Python GUI 应用程序步骤3:使用 PyInstaller 打包应用程序 完整示例代码解释结论 引言 在开发完一个图形用户界面…...

Android 13.0 蓝牙遥控器确认键弹不出输入法的解决方法
1.概述 在android13.0设备定制化开发时,遥控器是使用红外遥控器,也有使用蓝牙遥控器的,所以出现的问题不一定相同,今天遇到个问题就是蓝牙遥控器在输入数据时弹不出输入法的问题 首选排除输入法的问题,安装其他的输入法,也是同样的问题,这样就确定是系统EditText控件相关…...

spring boot面试50问
目录 前言: 1. 什么是 Spring Boot? 2. 为什么要用SpringBoot? 3. SpringBoot与SpringCloud 区别? 4. Spring Boot 有哪些优点? 5. Spring Boot 的核心注解是哪个?它主要由哪几个注解组成的࿱…...

条例24~25(设计与声明)
条例24 若所有参数皆需要类型转换,请为此采用非成员函数 有时候让类型内成员函数支持隐式类型转换是不妥善的。比如当我们想在类内实现operator *() 模拟乘法的时候。通常情况下表现良好,但若你想额外实现混合式运算。例如 int…...

Spring5应用之事务处理
作者简介:☕️大家好,我是Aomsir,一个爱折腾的开发者! 个人主页:Aomsir_Spring5应用专栏,Netty应用专栏,RPC应用专栏-CSDN博客 当前专栏:Spring5应用专栏_Aomsir的博客-CSDN博客 文章目录 参考文献前言事务…...

Python 中最常用的4种股票价格移动平均方法(三)
一、简介 移动平均线是各级交易者和投资者最广泛使用的技术指标之一。它们通过计算特定时期内的平均价格来帮助消除股票价格的固有波动性。移动平均线计算起来很简单,但也有更复杂的形式,旨在捕捉市场的更多细微差别。 这个由四部分组成的系列将讨论总共 4 种不同的移动平均方…...

Mybaits缓存踩的坑
记Mybaits缓存踩的坑 1.问题提出 最近开发一个记录操作前后修改内容的功能,获取修改前数据比较简单,直接从数据库获取,记录修改后的功能也比较简单,直接将用户修改的内容封装成po对象,然后两个比对就可以了ÿ…...

全国工商注册数据库的作用
随着经济的发展和市场竞争的加剧,越来越多的人开始关注公司的工商信息。这些信息不仅可以帮助人们了解公司的基本情况,还可以为投资者、合作伙伴、员工等提供决策依据。 工商数据库提供了全国范围内企业的基本信息。这些信息包括企业的名称、统一社会信用…...

【Linux】NTP时间服务器Chrony配置详解
🍁 博主 "开着拖拉机回家"带您 Go to New World.✨🍁 🦄 个人主页——🎐开着拖拉机回家_大数据运维-CSDN博客 🎐✨🍁 🪁🍁 希望本文能够给您带来一定的帮助🌸文…...

今年的秋招面试,确实有点难。
不可否认的是,今年秋招确实有点难 从今年的形势来看,好的 offer 都掌握在少数人的手里,想要秋招找到理想的工作,要么学历好,要么技术功底很扎实,这两样都不占的话,就业压力就会比较大。 如何从…...

Rn使用FlatList导航栏自动回到中间
import { useState, useRef } from react import { FlatList, View, Text, StyleSheet, TouchableOpacity } from react-nativeconst Center () > {const tabs ["语文", "数学", "英语", "政治", "历史", "地理&q…...

单例模式中的线程安全问题
小王学习录 本日鸡汤:单例模式什么是单例模式如何实现单例模式饿汉模式懒汉模式单例模式下的线程安全问题为什么在单例模式下会出现线程安全问题如何解决单例模式中的线程安全问题本日鸡汤: 志在山顶的人, 不会贪恋山腰的风景 单例模式 单例模式是设计模式中的一种, 所谓设计…...

Android 13 骁龙相机点击拍照流程分析(一)——点击拍照到更新到左下角缩略图
一.背景 由于最近客户定制需要将文件挂载类型修改为sdcardfs,由于修改了文件挂载类型,导致了骁龙相机拍照后不能点击进入相册,故对骁龙相机从点击事件开始进行问题的排查,此处不介绍最终的sdcardfs挂载后的问题解决方案 二.流程介绍 拍照的流程大概分为几个阶段:打开相机…...

Docker 的网络与数据管理
Docker 网络实现原理 Docker使用Linux桥接,在宿主机虚拟一个Docker容器网桥(docker0),Docker启动一个容器时会根据Docker网桥的网段分配给容器一个IP地址,称为Container-IP,同时Docker网桥是每个容器的默认网关。因为在同一宿主机…...